27,367 research outputs found
A synoptic view of ionic constitution above the F-layer maximum
Ionic composition above F layer maximum from Ariel I satellite ion mass spectromete
Electromagnetically Induced Transparency with Quantized Fields in Optocavity Mechanics
We report electromagnetically induced transparency using quantized fields in
optomechanical systems. The weak probe field is a narrow band squeezed field.
We present a homodyne detection of EIT in the output quantum field. We find
that the EIT dip exists even though the photon number in the squeezed vacuum is
at the single photon level. The EIT with quantized fields can be seen even at
temperatures of the order of 100 mK paving the way for using optomechanical
systems as memory elements.Comment: 6 pages, 5 figure
Effects of self-phase modulation on weak nonlinear optical quantum gates
A possible two-qubit gate for optical quantum computing is the parity gate
based on the weak Kerr effect. Two photonic qubits modulate the phase of a
coherent state, and a quadrature measurement of the coherent state reveals the
parity of the two qubits without destroying the photons. This can be used to
create so-called cluster states, a universal resource for quantum computing.
Here, the effect of self-phase modulation on the parity gate is studied,
introducing generating functions for the Wigner function of a modulated
coherent state. For materials with non-EIT-based Kerr nonlinearities, there is
typically a self-phase modulation that is half the magnitude of the cross-phase
modulation. Therefore, this effect cannot be ignored. It is shown that for a
large class of physical implementations of the phase modulation, the quadrature
measurement cannot distinguish between odd and even parity. Consequently, weak
nonlinear parity gates must be implemented with physical systems where the
self-phase modulation is negligable.Comment: 7 pages, 4 figure
Quantum Entanglement Initiated Super Raman Scattering
It has now been possible to prepare chain of ions in an entangled state and
thus question arises --- how the optical properties of a chain of entangled
ions differ from say a chain of independent particles. We investigate nonlinear
optical processes in such chains. We explicitly demonstrate the possibility of
entanglement produced super Raman scattering. Our results in contrast to
Dicke's work on superradiance are applicable to stimulated processes and are
thus free from the standard complications of multimode quantum electrodynamics.
Our results suggest the possibility of similar enhancement factors in other
nonlinear processes like four wave mixing.Comment: 4 pages, 1 figur
More efficient Bell inequalities for Werner states
In this paper we study the nonlocal properties of two-qubit Werner states
parameterized by the visibility parameter 0<p<1. New family of Bell
inequalities are constructed which prove the two-qubit Werner states to be
nonlocal for the parameter range 0.7056<p<1. This is slightly wider than the
range 0.7071<p<1, corresponding to the violation of the
Clauser-Horne-Shimony-Holt (CHSH) inequality. This answers a question posed by
Gisin in the positive, i.e., there exist Bell inequalities which are more
efficient than the CHSH inequality in the sense that they are violated by a
wider range of two-qubit Werner states.Comment: 7 pages, 1 figur
Interaction and Expressivity in Video Games: Harnessing the Rhetoric of Film
The film-maker uses the camera and editing creatively, not simply to present the action of the film but also to set up a particular relation between the action and the viewer. In 3D video games with action controlled by the player, the pseudo camera is usually less creatively controlled and has less effect on the player’s appreciation of and engagement with the game. This paper discusses methods of controlling games by easy and intuitive interfaces and use of an automated virtual camera to increase the appeal of games for users
Bright squeezed vacuum in a nonlinear interferometer: frequency/temporal Schmidt-mode description
Control over the spectral properties of the bright squeezed vacuum (BSV), a
highly multimode non-classical macroscopic state of light that can be generated
through high-gain parametric down conversion, is crucial for many applications.
In particular, in several recent experiments BSV is generated in a strongly
pumped SU(1,1) interferometer to achieve phase supersensitivity, perform
broadband homodyne detection, or tailor the frequency spectrum of squeezed
light. In this work, we present an analytical approach to the theoretical
description of BSV in the frequency domain based on the Bloch-Messiah reduction
and the Schmidt-mode formalism. As a special case we consider a strongly pumped
SU(1,1) interferometer. We show that different moments of the radiation at its
output depend on the phase, dispersion and the parametric gain in a nontrivial
way, thereby providing additional insights on the capabilities of nonlinear
interferometers. In particular, a dramatic change in the spectrum occurs as the
parametric gain increases
Cortical pain responses in human infants
Despite the recent increase in our understanding of the development of pain processing, it is still not known whether premature infants are capable of processing pain at a cortical level. In this study, changes in cerebral oxygenation over the somatosensory cortex were measured in response to noxious stimulation using real-time near-infrared spectroscopy in 18 infants aged between 25 and 45 weeks postmenstrual age. The noxious stimuli were heel lances performed for routine blood sampling; no blood tests were performed solely for the purpose of the study. Noxious stimulation produced a clear cortical response, measured as an increase in total hemoglobin concentration [HbT] in the contralateral somatosensory cortex, from 25 weeks (mean Delta[HbT] = 7.74 mu mol/L; SE, 1.10). Cortical responses were significantly greater in awake compared with sleeping infants, with a mean difference of 6.63 mu mol/L [95% confidence interval (CI) limits: 2.35, 10.91 mu mol/L; mean age, 35.2 weeks]. In awake infants, the response in the contralateral somatosensory cortex increased with age ( regression coefficient, 0.698 mu mol/L/week; 95% CI limits: 0.132, 1.265 mu mol/L/week) and the latency decreased with age (regression coefficient, -0.9861 mu mol/L/week; 95% CI limits: -1.5361, -0.4361 mu mol/L/week; age range, 25-38 weeks). The response was modality specific because no response was detected after non-noxious stimulation of the heel, even when accompanied by reflex withdrawal of the foot. We conclude that noxious information is transmitted to the preterm infant cortex from 25 weeks, highlighting the potential for both higher-level pain processing and pain-induced plasticity in the human brain from a very early age
- …