17 research outputs found

    A structural motor network correlates with motor function and not impairment post stroke

    No full text
    Combining structural and functional magnetic resonance imaging may provide insight into how residual motor networks contribute to motor outcomes post-stroke. The purpose of this study was to examine whether a structural motor network (SMN), generated with fMRI guided diffusion-based tractography, relates to motor function post-stroke. Twenty-seven individuals with mild to moderate upper limb impairment post stroke underwent diffusion magnetic resonance imaging. A bilateral motor network mask guided white matter tractography for each participant. Fractional anisotrophy (FA) was calculated for the SMN and corticospinal tracts (CST). The Wolf Motor Function Test (WMFT) rate and Fugl-Meyer Upper Limb (FM) tests characterized arm function and impairment respectively. The SMN and ipsilesional CST together explained approximately 35% of the variance in paretic arm function (WMFT-rate p = 0.006). This study demonstrates that a broader motor network, like the SMN, is functionally meaningful. Given that the motor network is widely distributed, the proposed SMN warrants further investigation as a potential adjunct biomarker to characterize recovery potential after stroke

    Behavioral and neural evidence of the rewarding value of exercise behaviors: A systematic review

    No full text
    In a time of physical inactivity pandemic, attempts to better understand the factors underlying the regulation of exercise behavior are important. The dominant neurobiological approach to exercise behavior considers physical activity to be a reward; however, negative affective responses during exercise challenge this idea. OBJECTIVE: Our objective was to systematically review studies testing the automatic reactions triggered by stimuli associated with different types of exercise behavior (e.g. physical activity, sedentary behaviors) and energetic cost variations (e.g. decreased energetic cost, irrespective of the level of physical activity). We also examined evidence supporting the hypothesis that behaviors minimizing energetic cost (BMEC) are rewarding. METHODS: Two authors systematically searched, screened, extracted, and analyzed data from articles in the MEDLINE database. RESULTS: We included 26 studies. Three outcomes of automatic processes were tested: affective reactions, attentional capture, and approach tendencies. Behavioral results show that physical activity can become attention-grabbing, automatically trigger positive affect, and elicit approach behaviors. These automatic reactions explain and predict exercise behaviors; however, the use of a wide variety of measures prevents drawing solid conclusions about the specific effects of automatic processes. Brain imaging results are scarce but show that stimuli associated with physical activity and, to a lesser extent, sedentary behaviors activate regions involved in reward processes. Studies investigating the rewarding value of behaviors driving energetic cost variations such as BMEC are lacking. CONCLUSION: Reward is an important factor in exercise behavior. The literature based on the investigation of automatic behaviors seems in line with the suggestion that physical activity is rewarding, at least for physically active individuals. Results suggest that sedentary behaviors could also be rewarding, although this evidence remains weak due to a lack of investigations. Finally, from an evolutionary perspective, BMEC are likely to be rewarding; however, no study has investigated this hypothesis. In sum, additional studies are required to establish a strong and complete framework of the reward processes underlying automatic exercise behavior

    Interhemispheric pathways are important for motor outcome in individuals with chronic and severe upper limb impairment post stroke

    Get PDF
    Background. Severity of arm impairment alone does not explain motor outcomes in people with severe impairment post stroke. Objective. Define the contribution of brain biomarkers to upper limb motor outcomes in people with severe arm impairment post stroke. Methods. Paretic arm impairment (Fugl-Meyer upper limb, FM-UL) and function (Wolf Motor Function Test rate, WMFT-rate) were measured in 15 individuals with severe (FM-UL ≤ 30/66) and 14 with mild-moderate (FM-UL > 40/66) impairment. Transcranial magnetic stimulation and diffusion weight imaging indexed structure and function of the corticospinal tract and corpus callosum. Separate models of the relationship between possible biomarkers and motor outcomes at a single chronic (≥6 months) time point post stroke were performed. Results. Age (ΔR0.365, p=0.017) and ipsilesional-transcallosal inhibition (ΔR0.182, p=0.048) explained a 54.7% (p=0.009) variance in paretic WMFT-rate. Prefrontal corpus callous fractional anisotropy (PF-CC FA) alone explained 49.3% (p=0.007) variance in FM-UL outcome. The same models did not explain significant variance in mild-moderate stroke. In the severe group, k-means cluster analysis of PF-CC FA distinguished two subgroups, separated by a clinically meaningful and significant difference in motor impairment (p=0.049) and function (p=0.006) outcomes. Conclusion. Corpus callosum function and structure were identified as possible biomarkers of motor outcome in people with chronic and severe arm impairment

    Improved processing speed and decreased functional connectivity in individuals with chronic stroke after paired exercise and motor training

    No full text
    Abstract After stroke, impaired motor performance is linked to an increased demand for cognitive resources. Aerobic exercise improves cognitive function in neurologically intact populations and may be effective in altering cognitive function post-stroke. We sought to determine if high-intensity aerobic exercise paired with motor training in individuals with chronic stroke alters cognitive-motor function and functional connectivity between the dorsolateral prefrontal cortex (DLPFC), a key region for cognitive-motor processes, and the sensorimotor network. Twenty-five participants with chronic stroke were randomly assigned to exercise (n = 14; 66 ± 11 years; 4 females), or control (n = 11; 68 ± 8 years; 2 females) groups. Both groups performed 5-days of paretic upper limb motor training after either high-intensity aerobic exercise (3 intervals of 3 min each, total exercise duration of 23-min) or watching a documentary (control). Resting-state fMRI, and trail making test part A (TMT-A) and B were recorded pre- and post-intervention. Both groups showed implicit motor sequence learning (p < 0.001); there was no added benefit of exercise for implicit motor sequence learning (p = 0.738). The exercise group experienced greater overall cognitive-motor improvements measured with the TMT-A. Regardless of group, the changes in task score, and dwell time during TMT-A were correlated with a decrease in DLPFC-sensorimotor network functional connectivity (task score: p = 0.025; dwell time: p = 0.043), which is thought to reflect a reduction in the cognitive demand and increased automaticity. Aerobic exercise may improve cognitive-motor processing speed post-stroke

    White Matter Biomarkers Associated with Motor Change in Individuals with Stroke: A Continuous Theta Burst Stimulation Study

    Get PDF
    Continuous theta burst stimulation (cTBS) is a form of noninvasive repetitive brain stimulation that, when delivered over the contralesional hemisphere, can influence the excitability of the ipsilesional hemisphere in individuals with stroke. cTBS applied prior to skilled motor practice interventions may augment motor learning; however, there is a high degree of variability in individual response to this intervention. The main objective of the present study was to assess white matter biomarkers of response to cTBS paired with skilled motor practice in individuals with chronic stroke. We tested the effects of stimulation of the contralesional hemisphere at the site of the primary motor cortex (M1c) or primary somatosensory cortex (S1c) and a third group who received sham stimulation. Within each stimulation group, individuals were categorized into responders or nonresponders based on their capacity for motor skill change. Baseline diffusion tensor imaging (DTI) indexed the underlying white matter microstructure of a previously known motor learning network, named the constrained motor connectome (CMC), as well as the corticospinal tract (CST) of lesioned and nonlesioned hemispheres. Across practice, there were no differential group effects. However, when categorized as responders vs. nonresponders using change in motor behaviour, we demonstrated a significant difference in CMC microstructural properties (as measured by fractional anisotropy (FA)) for individuals in M1c and S1c groups. There were no significant differences between responders and nonresponders in clinical baseline measures or microstructural properties (FA) in the CST. The present study identifies a white matter biomarker, which extends beyond the CST, advancing our understanding of the importance of white matter networks for motor after stroke
    corecore