23,819 research outputs found

    Bubble Growth in Superfluid 3-He: The Dynamics of the Curved A-B Interface

    Full text link
    We study the hydrodynamics of the A-B interface with finite curvature. The interface tension is shown to enhance both the transition velocity and the amplitudes of second sound. In addition, the magnetic signals emitted by the growing bubble are calculated, and the interaction between many growing bubbles is considered.Comment: 20 pages, 3 figures, LaTeX, ITP-UH 11/9

    Just in time: defining historical chronographics

    Get PDF
    The paper is historical in two respects, both concerned with visual representations of past time. Its first purpose is to enquire how visual representations of historical time can be used to bring out patterns in a museum collection. A case study is presented of the visualisation of data with sufficient subtlety to be useful to historians and curators. Such a visual analytics approach raises questions about the proper representation of time and of objects and events within it. It is argued that such chronographics can support both an externalised, objectivising point of view from ‘outside’ time and one which is immersive and gives a sense of the historic moment. These modes are set in their own historical context through original historical research, highlighting the shift to an Enlightenment view of time as a uniform container for events. This in turn prompts new ways of thinking about chronological visualisation, in particular the separation of the ‘ideal’ image of time from contingent, temporary rendered views

    Evidence of slow-light effects from rotary drag of structured beams

    Get PDF
    Self-pumped slow light, typically observed within laser gain media, is created by an intense pump field. By observing the rotation of a structured laser beam upon transmission through a spinning ruby window, we show that the slowing effect applies equally to both the dark and bright regions of the incident beam. This result is incompatible with slow-light models based on simple pulse-reshaping arising from optical bleaching. Instead, the slow-light effect arises from the long upper-state lifetime of the ruby and a saturation of the absorption, from which the Kramers–Kronig relation gives a highly dispersive phase index and a correspondingly high group index

    Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal

    Full text link
    We show that Coherent Population Oscillations effect allows to burn a narrow spectral hole (26Hz) within the homogeneous absorption line of the optical transition of an Erbium ion-doped crystal. The large dispersion of the index of refraction associated with this hole permits to achieve a group velocity as low as 2.7m/s with a ransmission of 40%. We especially benefit from the inhomogeneous absorption broadening of the ions to tune both the transmission coefficient, from 40% to 90%, and the light group velocity from 2.7m/s to 100m/s

    A typical reconstruction limit of compressed sensing based on Lp-norm minimization

    Full text link
    We consider the problem of reconstructing an NN-dimensional continuous vector \bx from PP constraints which are generated by its linear transformation under the assumption that the number of non-zero elements of \bx is typically limited to ρN\rho N (0ρ10\le \rho \le 1). Problems of this type can be solved by minimizing a cost function with respect to the LpL_p-norm ||\bx||_p=\lim_{\epsilon \to +0}\sum_{i=1}^N |x_i|^{p+\epsilon}, subject to the constraints under an appropriate condition. For several pp, we assess a typical case limit αc(ρ)\alpha_c(\rho), which represents a critical relation between α=P/N\alpha=P/N and ρ\rho for successfully reconstructing the original vector by minimization for typical situations in the limit N,PN,P \to \infty with keeping α\alpha finite, utilizing the replica method. For p=1p=1, αc(ρ)\alpha_c(\rho) is considerably smaller than its worst case counterpart, which has been rigorously derived by existing literature of information theory.Comment: 12 pages, 2 figure

    Narrow structure in the coherent population trapping resonances in rubidium and Rayleigh scattering

    Full text link
    The measurement of the coherent-population-trapping (CPT) resonances in uncoated Rb vacuum cells has shown that the shape of the resonances is different in different cells. In some cells the resonance has a complex shape - a narrow Lorentzian structure, which is not power broadened, superimposed on the power broadened CPT resonance. The results of the performed investigations on the fluorescence angular distribution are in agreement with the assumption that the narrow structure is a result of atom interaction with Rayleigh scattering light. The results are interesting for indication of the vacuum cleanness of the cells and building of magnetooptical sensors

    Strong nonlinear optical response of graphene flakes measured by four-wave mixing

    Get PDF
    We present the first experimental investigation of nonlinear optical properties of graphene flakes. We find that at near infrared frequencies a graphene monolayer exhibits a remarkably high third-order optical nonlinearity which is practically independent of the wavelengths of incident light. The nonlinear optical response can be utilized for imaging purposes, with image contrasts of graphene which are orders of magnitude higher than those obtained using linear microscopy.Comment: 4 pages, 5 figure
    corecore