19,473 research outputs found
Model-Independent Determinations of B -> D l nu , D* l nu Form Factors
We present nonperturbative, model-independent parametrizations of the
individual QCD form factors relevant to B -> D* l nu and B -> D l nu decays.
These results follow from dispersion relations and analyticity, without
recourse to heavy quark symmetry. To describe a form factor with two percent
accuracy, three parameters are necessary, one of which is its normalization at
zero recoil, F(1). We combine the individual form factors using heavy quark
symmetry to extract values for the product |V_{cb}| F(1) from B -> D* l nu data
with negligible extrapolation uncertainty.Comment: uses harvmac and epsf, 22 pages, 3 eps figures include
Model-Independent Semileptonic Form Factors Using Dispersion Relations
We present a method for parametrizing heavy meson semileptonic form factors
using dispersion relations, and from it produce a two-parameter description of
the B -> B elastic form factor. We use heavy quark symmetry to relate this
function to B -> D* l nu form factors, and extract
|V_cb|=0.0355^{+0.0029}_{-0.0025} from experimental data with a least squares
fit. Our method eliminates model-dependent uncertainties inherent in choosing a
parametrization for the extrapolation of the differential decay rate to
threshold.Comment: uses lanlmac(harvmac) and epsf, 12 pages, 1 eps figure included (Talk
by BG at the 6-th International Symposium on Heavy Flavour Physics, Pisa,
Italy, 6--10 June, 1995
New Constraints on Dispersive Form Factor Parameterizations from the Timelike Region
We generalize a recent model-independent form factor parameterization derived
from rigorous dispersion relations to include constraints from data in the
timelike region. These constraints dictate the convergence properties of the
parameterization and appear as sum rules on the parameters. We further develop
a new parameterization that takes into account finiteness and asymptotic
conditions on the form factor, and use it to fit to the elastic \pi
electromagnetic form factor. We find that the existing world sample of timelike
data gives only loose bounds on the form factor in the spacelike region, but
explain how the acquisition of additional timelike data or fits to other form
factors are expected to give much better results. The same parameterization is
seen to fit spacelike data extremely well.Comment: 24 pages, latex (revtex), 3 eps figure
Characteristics of vertical and lateral tunnel turbulence measured in air in the Langley Transonic Dynamics Tunnel
Preliminary measurements of the vertical and lateral velocity components of tunnel turbulence were obtained in the Langley Transonic Dynamics Tunnel test section using a constant-temperature anemometer equipped with a hot-film X-probe. For these tests air was the test medium. Test conditions included tunnel velocities ranging from 100 to 500 fps at atmospheric pressure. Standard deviations of turbulence velocities were determined and power spectra were computed. Unconstrained optimization was employed to determine parameter values of a general spectral model of a form similar to that used to describe atmospheric turbulence. These parameters, and others (notably break frequency and integral scale length), were determined at each test condition and compared with those of Dryden and Von Karman atmospheric turbulence spectra. When the data were discovered to be aliased, the spectral model was modified to account for and 'eliminate' the aliasing
Application of ERTS-A data to agricultural practices in the Mississippi Delta region
There are no author-identified significant results in this report
Bounds on Heavy-to-Heavy Mesonic Form Factors
We provide upper and lower bounds on the form factors for B -> D, D^* by
utilizing inclusive heavy quark effective theory sum rules. These bounds are
calculated to leading order in Lambda_QCD/m_Q and alpha_s. The O(alpha_s^2
beta_0) corrections to the bounds at zero recoil are also presented. We compare
our bounds with some of the form factor models used in the literature. All the
models we investigated failed to fall within the bounds for the combination of
form factors (omega^2 - 1)/(4 omega)|omega h_{A2}+h_{A3}|^2.Comment: 27 pages, 10 figure
Neutrino-Nucleus Cross Section Measurements using Stopped Pions and Low Energy Beta Beams
Two new facilities have recently been proposed to measure low energy
neutrino-nucleus cross sections, the nu-SNS (Spallation Neutron Source) and low
energy beta beams. The former produces neutrinos by pion decay at rest, while
the latter produces neutrinos from the beta decays of accelerated ions. One of
the uses of neutrino-nucleus cross section measurements is for supernova
studies, where typical neutrino energies are 10s of MeV. In this energy range
there are many different components to the nuclear response and this makes the
theoretical interpretation of the results of such an experiment complex.
Although even one measurement on a heavy nucleus such as lead is much
anticipated, more than one data set would be still better. We suggest that this
can be done by breaking the electron spectrum down into the parts produced in
coincidence with one or two neutrons, running a beta beam at more than one
energy, comparing the spectra produced with pions and a beta beam or any
combination of these.Comment: 6 pages, 6 figure
Study of the Distillability of Werner States Using Entanglement Witnesses and Robust Semidefinite Programs
We use Robust Semidefinite Programs and Entanglement Witnesses to study the
distillability of Werner states. We perform exact numerical calculations which
show 2-undistillability in a region of the state space which was previously
conjectured to be undistillable. We also introduce bases which yield
interesting expressions for the {\em distillability witnesses} and for a tensor
product of Werner states with arbitrary number of copies.Comment: 16 pages, 2 figure
Mean-field analysis of the majority-vote model broken-ergodicity steady state
We study analytically a variant of the one-dimensional majority-vote model in
which the individual retains its opinion in case there is a tie among the
neighbors' opinions. The individuals are fixed in the sites of a ring of size
and can interact with their nearest neighbors only. The interesting feature
of this model is that it exhibits an infinity of spatially heterogeneous
absorbing configurations for whose statistical properties we
probe analytically using a mean-field framework based on the decomposition of
the -site joint probability distribution into the -contiguous-site joint
distributions, the so-called -site approximation. To describe the
broken-ergodicity steady state of the model we solve analytically the
mean-field dynamic equations for arbitrary time in the cases n=3 and 4. The
asymptotic limit reveals the mapping between the statistical
properties of the random initial configurations and those of the final
absorbing configurations. For the pair approximation () we derive that
mapping using a trick that avoids solving the full dynamics. Most remarkably,
we find that the predictions of the 4-site approximation reduce to those of the
3-site in the case of expectations involving three contiguous sites. In
addition, those expectations fit the Monte Carlo data perfectly and so we
conjecture that they are in fact the exact expectations for the one-dimensional
majority-vote model
- …