19,257 research outputs found

    Critical Behavior of J/psi across the Phase Transition from QCD sum rules

    Full text link
    We study behavior of J/psi in hot gluonic matter using QCD sum rules. Taking into account temperature dependences of the gluon condensates extracted from lattice thermodynamics for the pure SU(3) system, we find that the mass and width of J/psi exhibit rapid change across the critical temperature.Comment: 5 pages, 3 figures. Poster contribution for Quark Matter 2008. To be published in the proceeding

    From Ground States to Local Hamiltonians

    Full text link
    Traditional quantum physics solves ground states for a given Hamiltonian, while quantum information science asks for the existence and construction of certain Hamiltonians for given ground states. In practical situations, one would be mainly interested in local Hamiltonians with certain interaction patterns, such as nearest neighbour interactions on some type of lattices. A necessary condition for a space VV to be the ground-state space of some local Hamiltonian with a given interaction pattern, is that the maximally mixed state supported on VV is uniquely determined by its reduced density matrices associated with the given pattern, based on the principle of maximum entropy. However, it is unclear whether this condition is in general also sufficient. We examine the situations for the existence of such a local Hamiltonian to have VV satisfying the necessary condition mentioned above as its ground-state space, by linking to faces of the convex body of the local reduced states. We further discuss some methods for constructing the corresponding local Hamiltonians with given interaction patterns, mainly from physical points of view, including constructions related to perturbation methods, local frustration-free Hamiltonians, as well as thermodynamical ensembles.Comment: 11 pages, 2 figures, to be published in PR

    Plus 50 Students and Their Experiences with Technology in Undergraduate Classes

    Get PDF
    As adult learners over 50 continue to pursue higher education, postsecondary institutions should have resources and services available to support this demographic. Previous research often combines Plus 50 students with all nontraditional students 24 years and older, making it difficult to understand the unique needs and learning experiences of older adult students in the academic environment. The use of technology for curriculum has increased significantly over the years and may present challenges for Plus 50 learners as they are introduced to it and learn to navigate it. The purpose of this study was to explore the experiences of Plus 50 students when they used technology in undergraduate courses. This phenomenological research study employed a purposeful homogenous sampling method to identify 10 Plus 50 participants at a 4-year institution in the Midwest. Malcolm Knowles’ theories of andragogy and self-directed learning served as appropriate frameworks for this study allowing the researchers to gain a more holistic understanding of how Plus 50 students used technology in their classes. The data from this research will contribute to the body of scholarship regarding the experiences of Plus 50 students and their use of technology in undergraduate classes. In addition, institutional stakeholders can use the findings from this study as a guide when reviewing curriculum and policy to support the needs of this unique student demographic. This research can also serve as a resource for Plus 50 students and provide them with insights on how to advocate for their learning needs and be adequately prepared when enrolling in courses that use technology

    A 163 micron laser heterodyne radiometer for OH

    Get PDF
    A 163 micron (1.836 THz) radiometer developed for airplane and/or balloon platforms is described. The laser local oscillator is a CO2 pumped methanol laser operating at a frequency which is approx. 1 GHz from the J = 3/2 - 1/2 transition of OH. The laser is used directly as a local oscillator or is translated in frequency to closer coincidence with the OH emission, depending on achieved detector IF bandwidth. Frequency translation techniques which are described are diode mixing and a method of single sideband generation using an external Stark modulated gas cell. The photoconductive mixer used is a strained Ge crystal, doped with Ga, originally used as an incoherent detector. The uniaxial strain on the Ga doped Ge crystal shifts the threshold for photoconduction from 100/cm to frequencies as low as 50/cm. These detectors are currently being characterized as mixers in the laboratory. Of particular interest are the effect of local oscillator power and strain on IF, bandwidth detector impedance, and conversion loss. Preliminary results of these tests are described and compared with theorectical expectations

    Resonant excitonic emission of a single quantum dot in the Rabi regime

    Full text link
    We report on coherent resonant emission of the fundamental exciton state in a single semiconductor GaAs quantum dot. Resonant regime with picoseconde laser excitation is realized by embedding the quantum dots in a waveguiding structure. As the pulse intensity is increased, Rabi oscillation is observed up to three periods. The Rabi regime is achieved owing to an enhanced light-matter coupling in the waveguide. This is due to a \emph{slow light effect} (c/vg3000c/v_{g}\simeq 3000), occuring when an intense resonant pulse propagates in a medium. The resonant control of the quantum dot fundamental transition opens new possibilities in quantum state manipulation and quantum optics experiments in condensed matter physics.Comment: Submitted to Phys. Rev. Let

    Effect of Inhomogeneous Heat Flow on the Enhancement of Heat Capacity in Helium-II by Counterflow near Tλ

    Get PDF
    In 2000 Harter et al. reported the first measurements of the enhancement of the heat capacity ΔCQ[equivalent]C(Q)-C(Q=0) of helium-II transporting a heat flux density Q near Tλ. Surprisingly, their measured ΔCQ was ~7–12 times larger than predicted, depending on which theory was assumed. In this report we present a candidate explanation for this discrepancy: unintended heat flux inhomogeneity. Because C(Q) should diverge at a critical heat flux density Qc, homogeneous heat flow is required for an accurate measurement. We present results from numerical analysis of the heat flow in the Harter et al. cell indicating that substantial inhomogeneity occurred. We determine the effect of the inhomogeneity on ΔCQ and find rough agreement with the observed disparity between prediction and measurement

    Statistics of opinion domains of the majority-vote model on a square lattice

    Full text link
    The existence of juxtaposed regions of distinct cultures in spite of the fact that people's beliefs have a tendency to become more similar to each other's as the individuals interact repeatedly is a puzzling phenomenon in the social sciences. Here we study an extreme version of the frequency-dependent bias model of social influence in which an individual adopts the opinion shared by the majority of the members of its extended neighborhood, which includes the individual itself. This is a variant of the majority-vote model in which the individual retains its opinion in case there is a tie among the neighbors' opinions. We assume that the individuals are fixed in the sites of a square lattice of linear size LL and that they interact with their nearest neighbors only. Within a mean-field framework, we derive the equations of motion for the density of individuals adopting a particular opinion in the single-site and pair approximations. Although the single-site approximation predicts a single opinion domain that takes over the entire lattice, the pair approximation yields a qualitatively correct picture with the coexistence of different opinion domains and a strong dependence on the initial conditions. Extensive Monte Carlo simulations indicate the existence of a rich distribution of opinion domains or clusters, the number of which grows with L2L^2 whereas the size of the largest cluster grows with lnL2\ln L^2. The analysis of the sizes of the opinion domains shows that they obey a power-law distribution for not too large sizes but that they are exponentially distributed in the limit of very large clusters. In addition, similarly to other well-known social influence model -- Axelrod's model -- we found that these opinion domains are unstable to the effect of a thermal-like noise

    Unplugging the Universe: the neglected electromagnetic consequence of decoupling

    Full text link
    This letter concentrates on the non-equilibrium evolution of magnetic field structures at the onset of recombination, when the charged particle current densities decay as neutrals are formed. We consider the effect that a decaying magnetic flux has on the acceleration of particles via the transient induced electric field. Since the residual charged-particle number density is small as a result of decoupling, we shall consider the magnetic and electric fields essentially to be imposed, neglecting the feedback from any minority accelerated population. We find that the electromagnetic treatment of this phase transition can produce energetic electrons scattered throughout the Universe. Such particles could have a significant effect on cosmic evolution in several ways: (i) their presence could delay the effective end of the recombination era; (ii) they could give rise to plasma concentrations that could enhance early gravitational collapse of matter by opposing cosmic expansion to a greater degree than neutral matter could; (iii) they could continue to be accelerated, and become the seed for reionisation at the later epoch z10z \approx 10.Comment: 4 pages, no figure

    Submarine landslides on the upper southeast Australian passive continental margin – preliminary findings

    Get PDF
    The southeast Australian passive continental margin is narrow, steep and sediment-deficient, and characterized by relatively low rates of modern sedimentation. Upper slope (\u3c1200m) sediments comprise mixtures of calcareous and terrigenous sand and mud. Three of twelve sediment cores recovered from geologically-recent, submarine landslides located offshore New South Wales/Queensland (NSW/QLD) are interpreted to have sampled failure surfaces at depths of between 85 cm and 220 cm below the present-day seabed. Differences in sediment physical properties are recorded above and below the three slide-plane boundaries. Sediment taken directly above the inferred submarine landslide failure surfaces and presumed to be post-landslide, returned radiocarbon ages of 15.8 ka, 20.7 ka and 20.1 ka. The last two ages correspond to adjacent slide features, which are inferred to be consistent with their being triggered by a single event such as an earthquake. Slope stability models based on classical soil mechanics and measured sediment shearstrengths indicate that the upper slope sediments should be stable. However, multibeam sonar data reveal that many upper slope landslides occur across the margin and that submarine landsliding is a common process. We infer from these results that: a) an unidentified mechanism regularly acts to reduce the shear resistance of these sediments to the very low values required to enable slope failure, and/or b) the margin experiences seismic events that act to destabilise the slope sediments
    corecore