486 research outputs found
The increase of the functional entropy of the human brain with age
We use entropy to characterize intrinsic ageing properties of the human brain. Analysis of fMRI data from a large dataset of individuals, using resting state BOLD signals, demonstrated that a functional entropy associated with brain activity increases with age. During an average lifespan, the entropy, which was calculated from a population of individuals, increased by approximately 0.1 bits, due to correlations in BOLD activity becoming more widely distributed. We attribute this to the number of excitatory neurons and the excitatory conductance decreasing with age. Incorporating these properties into a computational model leads to quantitatively similar results to the fMRI data. Our dataset involved males and females and we found significant differences between them. The entropy of males at birth was lower than that of females. However, the entropies of the two sexes increase at different rates, and intersect at approximately 50 years; after this age, males have a larger entropy
Measuring the effect of enhanced cleaning in a UK hospital : a prospective cross-over study
Increasing hospital-acquired infections have generated much attention over the last decade. There is evidence that hygienic cleaning has a role in the control of hospital-acquired infections. This study aimed to evaluate the potential impact of one additional cleaner by using microbiological standards based on aerobic colony counts and the presence of Staphylococcus aureus including meticillin-resistant S. aureus. We introduced an additional cleaner into two matched wards from Monday to Friday, with each ward receiving enhanced cleaning for six months in a cross-over design. Ten hand-touch sites on both wards were screened weekly using standardised methods and patients were monitored for meticillin-resistant S. aureus infection throughout the year-long study. Patient and environmental meticillin-resistant S. aureus isolates were characterised using molecular methods in order to investigate temporal and clonal relationships. Enhanced cleaning was associated with a 32.5% reduction in levels of microbial contamination at handtouch sites when wards received enhanced cleaning (P < 0.0001: 95% CI 20.2%, 42.9%). Near-patient sites (lockers, overbed tables and beds) were more frequently contaminated with meticillin-resistant S. aureus/S. aureus than sites further from the patient (P = 0.065). Genotyping identified indistinguishable strains from both handtouch sites and patients. There was a 26.6% reduction in new meticillin-resistant S. aureus infections on the wards receiving extra cleaning, despite higher meticillin-resistant S. aureus patient-days and bed occupancy rates during enhanced cleaning periods (P = 0.032: 95% CI 7.7%, 92.3%). Adjusting for meticillin-resistant S. aureus patient-days and based upon nine new meticillin-resistant S. aureus infections seen during routine cleaning, we expected 13 new infections during enhanced cleaning periods rather than the four that actually occurred. Clusters of new meticillin-resistant S. aureus infections were identified 2 to 4 weeks after the cleaner left both wards. Enhanced cleaning saved the hospital £30,000 to £70,000.Introducing one extra cleaner produced a measurable effect on the clinical environment, with apparent benefit to patients regarding meticillin-resistant S. aureus infection. Molecular epidemiological methods supported the possibility that patients acquired meticillin-resistant S. aureus from environmental sources. These findings suggest that additional research is warranted to further clarify the environmental, clinical and economic impact of enhanced hygienic cleaning as a component in the control of hospital-acquired infection
Rac1 Is Required for Pathogenicity and Chm1-Dependent Conidiogenesis in Rice Fungal Pathogen Magnaporthe grisea
Rac1 is a small GTPase involved in actin cytoskeleton organization and polarized cell growth in many organisms. In this study, we investigate the biological function of MgRac1, a Rac1 homolog in Magnaporthe grisea. The Mgrac1 deletion mutants are defective in conidial production. Among the few conidia generated, they are malformed and defective in appressorial formation and consequently lose pathogenicity. Genetic complementation with native MgRac1 fully recovers all these defective phenotypes. Consistently, expression of a dominant negative allele of MgRac1 exhibits the same defect as the deletion mutants, while expression of a constitutively active allele of MgRac1 can induce abnormally large conidia with defects in infection-related growth. Furthermore, we show the interactions between MgRac1 and its effectors, including the PAK kinase Chm1 and NADPH oxidases (Nox1 and Nox2), by the yeast two-hybrid assay. While the Nox proteins are important for pathogenicity, the MgRac1-Chm1 interaction is responsible for conidiogenesis. A constitutively active chm1 mutant, in which the Rac1-binding PBD domain is removed, fully restores conidiation of the Mgrac1 deletion mutants, but these conidia do not develop appressoria normally and are not pathogenic to rice plants. Our data suggest that the MgRac1-Chm1 pathway is responsible for conidiogenesis, but additional pathways, including the Nox pathway, are necessary for appressorial formation and pathogenicity
Childhood loneliness as a predictor of adolescent depressive symptoms: an 8-year longitudinal study
Childhood loneliness is characterised by children’s perceived dissatisfaction with aspects of their social relationships. This 8-year prospective study investigates whether loneliness in childhood predicts depressive symptoms in adolescence, controlling for early childhood indicators of emotional problems and a sociometric measure of peer social preference. 296 children were tested in the infant years of primary school (T1 5 years of age), in the upper primary school (T2 9 years of age) and in secondary school (T3 13 years of age). At T1, children completed the loneliness assessment and sociometric interview. Their teachers completed externalisation and internalisation rating scales for each child. At T2, children completed a loneliness assessment, a measure of depressive symptoms, and the sociometric interview. At T3, children completed the depressive symptom assessment. An SEM analysis showed that depressive symptoms in early adolescence (age 13) were predicted by reports of depressive symptoms at age 8, which were themselves predicted by internalisation in the infant school (5 years). The interactive effect of loneliness at 5 and 9, indicative of prolonged loneliness in childhood, also predicted depressive symptoms at age 13. Parent and peer-related loneliness at age 5 and 9, peer acceptance variables, and duration of parent loneliness did not predict depression. Our results suggest that enduring peer-related loneliness during childhood constitutes an interpersonal stressor that predisposes children to adolescent depressive symptoms. Possible mediators are discussed
The Neural Basis of Object-Context Relationships on Aesthetic Judgment
The relationship between contextual information and object perception has received considerable attention in neuroimaging studies. In the work reported here, we used functional magnetic resonance imaging (fMRI) to investigate the relationship between aesthetic judgment and images of objects in their normal contextual setting versus images of objects in abnormal contextual settings and the underlying brain activity. When object-context relationships are violated changes in visual perception and aesthetic judgment emerges that exposes the contribution of vision to interpretations shaped by previous experience. We found that effects of context on aesthetic judgment modulates different memory sub-systems, while aesthetic judgment regardless of context recruit medial and lateral aspects of the orbitofrontal cortex, consistent with previous findings. Visual cortical areas traditionally associated with the processing of visual features are recruited in normal contexts, irrespective of aesthetic ratings, while prefrontal areas are significantly more engaged when objects are viewed in unaccustomed settings
Methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii on computer interface surfaces of hospital wards and association with clinical isolates
<p>Abstract</p> <p>Background</p> <p>Computer keyboards and mice are potential reservoirs of nosocomial pathogens, but routine disinfection for non-water-proof computer devices is a problem. With better hand hygiene compliance of health-care workers (HCWs), the impact of these potential sources of contamination on clinical infection needs to be clarified.</p> <p>Methods</p> <p>This study was conducted in a 1600-bed medical center of southern Taiwan with 47 wards and 282 computers. With education and monitoring program of hand hygiene for HCWs, the average compliance rate was 74% before our surveillance. We investigated the association of methicillin-resistant <it>Staphylococcus aureus </it>(MRSA), <it>Pseudomonas aeruginosa </it>and <it>Acinetobacter baumannii</it>, three leading hospital-acquired pathogens, from ward computer keyboards, mice and from clinical isolates in non-outbreak period by pulsed field gel electrophoresis and antibiogram.</p> <p>Results</p> <p>Our results revealed a 17.4% (49/282) contamination rate of these computer devices by <it>S. aureus</it>, <it>Acinetobacter </it>spp. or <it>Pseudomonas </it>spp. The contamination rates of MRSA and <it>A. baumannii </it>in the ward computers were 1.1% and 4.3%, respectively. No <it>P. aeruginosa </it>was isolated. All isolates from computers and clinical specimens at the same ward showed different pulsotypes. However, <it>A. baumannii </it>isolates on two ward computers had the same pulsotype.</p> <p>Conclusion</p> <p>With good hand hygiene compliance, we found relatively low contamination rates of MRSA, <it>P. aeruginosa </it>and <it>A. baumannii </it>on ward computer interface, and without further contribution to nosocomial infection. Our results suggested no necessity of routine culture surveillance in non-outbreak situation.</p
From DNA sequence to application: possibilities and complications
The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems.
The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons.
Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.
Perilipin 2 (PLIN2)-Deficiency Does Not Increase Cholesterol-Induced Toxicity in Macrophages
Interventions on macrophages/foam cells to redirect intracellular cholesterol towards efflux pathways could become a very valuable addition to our therapeutic arsenal against atherosclerosis. However, certain manipulations of the cholesteryl ester cycle, such as the inhibition of ACAT1, an ER-resident enzyme that re-esterifies cholesterol, are not well tolerated. Previously we showed that targeting perilipin-2 (PLIN2), a major lipid droplet (LD)-associated protein in macrophages, prevents foam cell formation and protects against atherosclerosis. Here we have assessed the tolerance of PLIN2-deficient bone marrow derived macrophages (BMM) to several lipid loading conditions similar to the found during atherosclerosis development, including exposure to modified low-density lipoprotein (mLDL) and 7-ketocholesterol (7-KC), a free cholesterol (FC) metabolite, in media with or without cholesterol acceptors. BMM isolated from mice that do or do not express PLIN2 were tested for apoptosis (TUNEL and cleaved caspase-3), ER stress (CHOP induction and XBP-1 splicing), and inflammation (TNF-α and IL-6 mRNA levels). Like in other cell types, PLIN2 deficiency impairs LD buildup in BMM. However, while most stress parameters were elevated in macrophages under ACAT inhibition and 7-KC loading, PLIN2 inactivation was well tolerated. The data support the safety of targeting PLIN2 to prevent foam cell formation and atherosclerosis
- …