308 research outputs found

    Implementing and scaling verbal autopsies: into the unknown

    Get PDF
    Well-functioning civil registration and vital statistics (CRVS) systems provide policymakers and stakeholders with accurate and timely information regarding the number of births, deaths, and specific causes of mortality within a population. Ideally, this information is used to guide the effective delivery of health and social development programs [1]. These systems can also facilitate efforts to promote equity and justice by demonstrating the needs of the poorest and most vulnerable groups

    Reply to Gautret et al

    Get PDF
    To the Editor—We thank Gautret et al for their comments and interest in our work. We found it compelling to see the Web of Science data that illustrated the ac-celeration of scholarly publications at the intersection of climate change and vec-tor-borne disease. This trend is perhaps unsurprising, considering that each of the last 3 decades has been successively warm-er at the Earth’s surface than any preced-ing decade since 1850, and well-accepted science has demonstrated the devastating ecologic effects of these changes [1]

    The Importance of Taking a Military History

    Get PDF
    The most important action a provider can take to ensure that a veteran receives optimal health care is perhaps the easiest and, ironically, the most neglected: asking if a patient has served in the military and taking a basic military history. In previously published articles, Jeffrey Brown1 and Ross Boyce,2 physicians with prior military service, reported that their own health care providers had rarely asked about their service. For Dr Brown, in the four decades since his combat service in Vietnam, he noted

    A tale of two studies: Study design and our understanding of SARS-CoV-2 seroprevalence

    Get PDF
    The COVID-19 pandemic is arguably the most important public health crisis of the last century. To date, infections with the SARS-CoV-2 virus have caused nearly 300,000 deaths in the United States alone [1], while also contributing to substantial excess morbidity and mortality from delayed and deferred care [2]. In addition to the direct and indirect health impacts, policies intended to limit the spread of the disease have resulted in large-scale disruptions to education systems, economic activity, and social networks. Put simply, the COVID-19 pandemic has impacted the daily lives of nearly all Americans in a way that no other health crisis has in our lifetimes

    Estimation Without Representation: Early Severe Acute Respiratory Syndrome Coronavirus 2 Seroprevalence Studies and the Path Forward

    Get PDF
    The recent development and regulatory approval of a variety of serological assays indicating the presence of antibodies against se-vere acute respiratory syndrome coronavirus 2 has led to rapid and widespread implementation of seroprevalence studies. Accurate estimates of seroprevalence are needed to model transmission dynamics and estimate mortality rates. Furthermore, seropreva-lence levels in a population help guide policy surrounding reopening efforts. The literature to date has focused heavily on issues surrounding the quality of seroprevalence tests and less on the sampling methods that ultimately drive the representativeness of resulting estimates. Seroprevalence studies based on convenience samples are being reported widely and extrapolated to larger popu-lations for the estimation of total coronavirus disease 2019 (COVID-19) infections, comparisons of prevalence across geographic regions, and estimation of mortality rates. In this viewpoint, we discuss the pitfalls that can arise with the use of convenience samples and offer guidance for moving towards more representative and timely population estimates of COVID-19 seroprevalence

    Errors in Diagnostic Test Use and Interpretation Contribute to the High Number of Lyme Disease Referrals in a Low-Incidence State

    Get PDF
    Lyme disease accounted for more than two-thirds (56 of 81, 69.1%) of all tick-borne disease referrals to a large, academic infectious diseases clinic in a low-incidence state. Deviations from diagnostic testing guidelines and errors in test interpretation were common (23 of 35, 65.7%), suggesting that frontline providers need additional clinical support

    Improving the Specificity of Plasmodium falciparum Malaria Diagnosis in High-Transmission Settings with a Two-Step Rapid Diagnostic Test and Microscopy Algorithm

    Get PDF
    ABSTRACT Poor specificity may negatively impact rapid diagnostic test (RDT)-based diagnostic strategies for malaria. We performed real-time PCR on a subset of subjects who had undergone diagnostic testing with a multiple-antigen (histidine-rich protein 2 and pan -lactate dehydrogenase pLDH [HRP2/pLDH]) RDT and microscopy. We determined the sensitivity and specificity of the RDT in comparison to results of PCR for the detection of Plasmodium falciparum malaria. We developed and evaluated a two-step algorithm utilizing the multiple-antigen RDT to screen patients, followed by confirmatory microscopy for those individuals with HRP2-positive (HRP2 + )/pLDH-negative (pLDH − ) results. In total, dried blood spots (DBS) were collected from 276 individuals. There were 124 (44.9%) individuals with an HRP2 + /pLDH + result, 94 (34.1%) with an HRP2 + /pLDH − result, and 58 (21%) with a negative RDT result. The sensitivity and specificity of the RDT compared to results with real-time PCR were 99.4% (95% confidence interval [CI], 95.9 to 100.0%) and 46.7% (95% CI, 37.7 to 55.9%), respectively. Of the 94 HRP2 + /pLDH − results, only 32 (34.0%) and 35 (37.2%) were positive by microscopy and PCR, respectively. The sensitivity and specificity of the two-step algorithm compared to results with real-time PCR were 95.5% (95% CI, 90.5 to 98.0%) and 91.0% (95% CI, 84.1 to 95.2), respectively. HRP2 antigen bands demonstrated poor specificity for the diagnosis of malaria compared to that of real-time PCR in a high-transmission setting. The most likely explanation for this finding is the persistence of HRP2 antigenemia following treatment of an acute infection. The two-step diagnostic algorithm utilizing microscopy as a confirmatory test for indeterminate HRP2 + /pLDH − results showed significantly improved specificity with little loss of sensitivity in a high-transmission setting

    Community health workers trained to conduct verbal autopsies provide better mortality measures than existing surveillance: Results from a cross-sectional study in rural western Uganda

    Get PDF
    Background: In much of sub-Saharan Africa, health facilities serve as the primary source of routine vital statistics. These passive surveillance systems, however, are plagued by infrequent and unreliable reporting and do not capture events that occur outside of the formal health sector. Verbal autopsies (VA) have been utilized to estimate the burden and causes of mortality where civil registration and vital statistics systems are weak, but VAs have not been widely employed in national surveillance systems. In response, we trained lay community health workers (CHW) in a rural sub-county of western Uganda to conduct VA interviews in order to assess the feasibility of leveraging CHW to measure the burden of disease in resource limited settings. Methods and findings: Trained CHWs conducted a cross-sectional survey of the 36 villages comprising the Bugoye sub-county to identify all deaths occurring in the prior year. The sub county has an estimated population of 50,249, approximately one-quarter of whom are children under 5 years of age (25.3%). When an eligible death was reported, CHWs administered a WHO 2014 VA questionnaire, the results of which were analyzed using the InterVA-4 tool. To compare the findings of the CHW survey to existing surveillance systems, study staff reviewed inpatient registers from neighboring referral health facilities in an attempt to match recorded deaths to those identified by the survey. Overall, CHWs conducted high quality VA interviews on direct observation, identifying 230 deaths that occurred within the sub-county, including 77 (33.5%) among children under five years of age. More than half of the deaths (123 of 230, 53.5%) were reported to have occurred outside a health facility and thus would not be captured by passive surveillance. More than two-thirds (73 of 107, 68.2%) of facility deaths took place in one of three nearby hospitals, yet only 35 (47.9%) were identified on our review of inpatient registers. Consistent with previous VA studies, the leading causes of death among children under five years of age were malaria (19.5%), prematurity (19.5%), and neonatal pneumonia (15.6%). while among adults, HIV/AIDS-related deaths illness (13.6%), pulmonary tuberculosis (11.4%) and malaria (8.6%) were the leading causes of death. No child deaths identified from inpatient registers listed HIV/AIDS as a cause of death despite 8 deaths (10.4%) attributed to HIV/AIDS as determined by VA. Conclusions: Lay CHWs are able to conduct high quality VA interviews to capture critical information that can be analyzed using standard methodologies to provide a more complete estimate of the burden and causes of mortality. Similar approaches can be scaled to improve the measurement of vital statistics in order to facilitate appropriate public health interventions in rural areas of sub-Saharan Africa

    Practical Implications of the Non-Linear Relationship between the Test Positivity Rate and Malaria Incidence

    Get PDF
    Background: The test positivity rate (TPR), defined as the number of laboratory-confirmed malaria tests per 100 suspected cases examined, is widely used by malaria surveillance programs as one of several key indicators of temporal trends in malaria incidence. However, there have been few studies using empiric data to examine the quantitative nature of this relationship. Methods: To characterize the relationship between the test positivity rate and the incidence of malaria, we fit regression models using the confirmed malaria case rate as the outcome of interest and TPR as the predictor of interest. We varied the relationship between the two by alternating linear and polynomial terms for TPR, and compared the goodness of fit of each model. Results: A total of 7,668 encounters for malaria diagnostic testing were recorded over the study period within a catchment area of 25,617 persons. The semi-annual TPR ranged from 4.5% to 59% and the case rates ranged from 0.5 to 560 per 1,000 persons. The best fitting model was an exponential growth model (R2 = 0.80, AIC = 637). At low transmission levels (TPR<10%), the correlation between TPR and CMCR was poor, with large reductions in the TPR, for example from 10% to 1%, was associated with a minimal change in the CMCR (3.9 to 1.7 cases per 1,000 persons). At higher transmission levels, the exponential relationship made relatively small changes in TPR suggestive of sizeable change in estimated malaria incidence, suggesting that TPR remains a valuable surveillance indicator in such settings. Conclusions: The TPR and the confirmed malaria case rate have a non-linear relationship, which is likely to have important implications for malaria surveillance programs, especially at the extremes of transmission

    Association of Simulated COVID-19 Vaccination and Nonpharmaceutical Interventions With Infections, Hospitalizations, and Mortality

    Get PDF
    IMPORTANCE Vaccination against SARS-CoV-2 has the potential to significantly reduce transmission and COVID-19 morbidity and mortality. The relative importance of vaccination strategies and nonpharmaceutical interventions (NPIs) is not well understood. OBJECTIVE To assess the association of simulated COVID-19 vaccine efficacy and coverage scenarios with and without NPIs with infections, hospitalizations, and deaths. DESIGN, SETTING, AND PARTICIPANTS An established agent-based decision analytical model was used to simulate COVID-19 transmission and progression from March 24, 2020, to September 23, 2021. The model simulated COVID-19 spread in North Carolina, a US state of 10.5 million people. A network of 1 017 720 agents was constructed from US Census data to represent the statewide population. EXPOSURES Scenarios of vaccine efficacy (50% and 90%), vaccine coverage (25%, 50%, and 75% at the end of a 6-month distribution period), and NPIs (reduced mobility, school closings, and use of face masks) maintained and removed during vaccine distribution. MAIN OUTCOMES AND MEASURES Risks of infection from the start of vaccine distribution and risk differences comparing scenarios. Outcome means and SDs were calculated across replications. RESULTS In the worst-case vaccination scenario (50% efficacy, 25%coverage), a mean (SD) of 2 231 134 (117 867) new infections occurred after vaccination began with NPIs removed, and a mean (SD) of 799 949 (60 279) new infections occurred with NPIs maintained during 11 months. In contrast, in the best-case scenario (90% efficacy, 75%coverage), a mean (SD) of 527 409 (40 637) new infections occurred with NPIs removed and a mean (SD) of 450 575 (32 716) new infections occurred with NPIs maintained. With NPIs removed, lower efficacy (50%) and higher coverage (75%) reduced infection risk by a greater magnitude than higher efficacy (90%) and lower coverage (25%) compared with theworst-case scenario (mean [SD] absolute risk reduction, 13%[1%] and 8%[1%], respectively). CONCLUSIONS AND RELEVANCE Simulation outcomes suggest that removing NPIs while vaccines are distributed may result in substantial increases in infections, hospitalizations, and deaths. Furthermore, as NPIs are removed, higher vaccination coverage with less efficacious vaccines can contribute to a larger reduction in risk of SARS-CoV-2 infection compared with more efficacious vaccines at lower coverage. These findings highlight the need for well-resourced and coordinated efforts to achieve high vaccine coverage and continued adherence to NPIs before many prepandemic activities can be resumed
    • …
    corecore