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Abstract

Background

The test positivity rate (TPR), defined as the number of laboratory-confirmed malaria tests

per 100 suspected cases examined, is widely used by malaria surveillance programs as

one of several key indicators of temporal trends in malaria incidence. However, there have

been few studies using empiric data to examine the quantitative nature of this relationship.

Methods

To characterize the relationship between the test positivity rate and the incidence of malaria,

we fit regression models using the confirmed malaria case rate as the outcome of interest

and TPR as the predictor of interest. We varied the relationship between the two by alternat-

ing linear and polynomial terms for TPR, and compared the goodness of fit of each model.

Results

A total of 7,668 encounters for malaria diagnostic testing were recorded over the study

period within a catchment area of 25,617 persons. The semi-annual TPR ranged from 4.5%

to 59% and the case rates ranged from 0.5 to 560 per 1,000 persons. The best fitting model

was an exponential growth model (R2 = 0.80, AIC = 637). At low transmission levels

(TPR<10%), the correlation between TPR and CMCR was poor, with large reductions in the

TPR, for example from 10% to 1%, was associated with a minimal change in the CMCR (3.9

to 1.7 cases per 1,000 persons). At higher transmission levels, the exponential relationship

made relatively small changes in TPR suggestive of sizeable change in estimated malaria

incidence, suggesting that TPR remains a valuable surveillance indicator in such settings.
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Conclusions

The TPR and the confirmed malaria case rate have a non-linear relationship, which is likely

to have important implications for malaria surveillance programs, especially at the extremes

of transmission.

Background
Valid data describing the number and distribution of malaria cases is critical for the design and
implementation of malaria control programs [1–3]. Timely and accurate measurement of dis-
ease incidence over time is, however, challenging in malaria-endemic countries. With a high
frequency of malaria cases and limited resources for maintaining an extensive recording and
reporting system, many national malaria surveillance programs rely on the reporting and use
of aggregate data by district and higher administrative levels [3]. Thus, trends in malaria inci-
dence are often estimated from the total number of cases reported through routine health man-
agement information systems (HMIS). While this approach is relatively simple and
inexpensive [4]. it is susceptible to variations in local health seeking behaviors, diagnostic test
utilization, and the completeness of record keeping and reporting [5, 6].

The test positivity rate (TPR), defined as the number of laboratory-confirmed malaria tests
per 100 suspected cases examined, is one of several indicators used for estimating temporal
trends in malaria incidence [3]. The positivity rate may be derived from either rapid diagnostic
test positivity rates (RDT PR) or microscopy (SPR). Advantages of the TPR method are that it
only considers laboratory confirmed cases of malaria and it is relatively easy to monitor at
peripheral health facilities. A disadvantage of TPR is that it is potentially susceptible to bias
from changes over time in diagnostic testing methods, health care-seeking behavior, and the
incidence of non-malarial febrile illnesses, rather than changes in malaria incidence [7].

The TPR is one of the WHO’s ten core malaria indicators for malaria surveillance in the
control phase [3]. The measure has been used to define malaria endemicity [8, 9]. is widely uti-
lized to assess temporal trends in malaria incidence [5] and to evaluate the impact of malaria
control interventions [10–12]. A TPR<5% during the peak malaria season also serves as an
important milestone for countries moving towards malaria elimination. The WHO currently
recommends that countries may consider entering a pre-elimination phase if the TPR during
the peak malaria season is<5% or the incidence falls below 5 cases per 1,000, at which time
changes in routine surveillance systems may be required [13, 14].

Despite the widespread adoption of the TPR as a practical measure of assessing temporal
trends in malaria incidence, there have been few studies examining the practical implications
and limitations of this method using empiric data [6, 7, 15, 16]. To better characterize the rela-
tionship between TPR and trends in the incidence of malaria we compared village-level TPR
and the confirmed malaria case rate (CMCR), defined as the number of laboratory-confirmed
malaria cases per 1,000 people, collected over a two-year period among patients presenting to a
rural health center in Western Uganda.

Methods
The Bugoye Level III Health Center (BHC), in the Kasese District of Western Uganda (0° 18’
North, 30° 5’ East), functions as the primary health center for the Bugoye sub-county, serving a
rural population of approximately 50,000 residents. Like much of Uganda, the climate in
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Bugoye permits stable, year-round malaria transmission. There are traditionally annual peaks
following the end of the rainy seasons in July and January, when test positivity rates can reach
50%, and low-transmission seasons in March and November when test positivity rates are typi-
cally in the 10–20% range [17]. RDTs were first introduced at BHC in 2011 and have become
the primary method of malaria diagnosis [18].

Of the more than 40 villages in the health center catchment area, we purposefully selected
15 villages from the Bugoye and Mubuku Sub-Counties. These villages were chosen because of
(1) their close proximity to the health center and (2) the absence of other health facilities pro-
viding malaria case management. Our intent was to select villages where the vast majority of
suspected malaria cases present to BHC so that CMCR would closely approximate malaria inci-
dence. Malaria diagnostic test results, defined as either microscopy or RDT, were obtained
from health center laboratory registries. We did not include any cases that did not have avail-
able diagnostic testing results. We retrospectively examined results for a period of 24 months
beginning in May 2012. For each record, we abstracted patient age, gender, village of residence,
and diagnostic test result.

Our primary predictor of interest was TPR, which was calculated as the number of positive
diagnostic tests as a proportion of the total tests performed among residents of each of the
specified villages. In sensitivity analyses, we also separately calculated the SPR, using only
microscopy results, and the RDT PR, using only RDT results. Our primary outcome of interest
was the CMCR, which we calculated for each of the 15 selected villages in six-month intervals
using laboratory-confirmed malaria episodes from BHC records to estimate village specific
malaria case totals and 2014 census data to esimtate village population size. We chose a six-
month period of observation because each six-month period in this region captures both a sin-
gle dry and single rainy season. In sensitivity analyses, we altered the outcome, substituting
periods of 3-month and 24-months for the 6-month observation period. The results of the sen-
sitivity analyses were reported in terms of exponentiated coefficients, which are the change in
odds in the multiplicative scale for a unit increase in the corresponding predictor variable hold-
ing other variables at certain value.

Data were entered into Microsoft Excel (Redmond, WA) and analyzed with Stata 12.1 (Col-
lege Station, TX). We first summarized patient demographics and malaria seasonality by vil-
lage. Next, we graphically depicted the relationship between the TPR and the CMCR by village.
We then developed regression models, varying the relationship between TPR and CMCR using
linear, logistic, polynomial, and exponential terms, and compared the goodness of fit between
models using the Adjusted R2 and Akaike Information Criteria (AIC) [19]. We used the
selected model to estimate the relationship between CMCR and TPR. We performed regression
diagnostics by calculating Cook’s D [20] for each village to assess for high leverage and/or large
residuals. Points with Cook’s D greater than 1 were excluded in secondary analyses.

Ethical approval for study procedures and data collection was provided by the institutional
review boards of Partners Healthcare and the Mbarara University of Science and Technology.
Written informed consent was not required by the ethical review committees due to the rou-
tine, de-identified nature of the data.

Results
A total of 7,668 individual encounters for malaria diagnostic testing were recorded over the
study period (S1 Table). Approximately 30% of patients presenting for testing were under the
age of five years. The number of individuals tested as a percentage of the population ranged
from 1.9% in Kisamba to 108% in Izinga. There were 6,811 RDTs and 1,081 thin/thick smears
performed, with 224 (2.9%) individuals undergoing both diagnostic procedures. Of the RDTs,

TPR and Malaria Incidence

PLOS ONE | DOI:10.1371/journal.pone.0152410 March 28, 2016 3 / 9



2,335 (34.3%) were positive for malaria, while 500 (46.3%) of the smears were positive for
malaria.

The overall CMCR in the selected villages was 59/1,000 persons per year. The lowest
CMCRs were seen in the villages of Kisamba (1.3/1,000) and Kihindi (4.1/1,000), both of which
are located on the mountain ridges with average elevations>1,600m. The highest six-month
CMCR was seen in the village of Izinga (273.7/1,000), which lies between two major rivers at
an elevation approximately 400m lower than low-incidence villages. Additional results, strati-
fied by village, are shown in Table 1.

Fig 1 depicts the relationship between the TPR and CMCR. An exponential growth curve of
the six-month CMCR was the best fitting model (Adjusted R2 = 0.80, AIC 637) compared to
other models (Table 2). We found the linear model to poorly fit the data, with an adjusted R2

of 0.44 and AIC of 680 compared to the exponential model (Fig 1).
Using the linear model, we would estimate negligible malaria transmission at TPR less than

15%, but a constant rate of increase of approximately 22 cases per 1,000 for each 5% increase in
TPR above that level. In contrast, the exponential model estimates that an increase in TPR
from 5% to 10% corresponds to a predicted increase in CMCR of only 1.5 cases per 1,000 (2.4
versus 3.9 cases per 1,000).

Of note, using the exponential model, a similar 5% absolute change in TPR from 30 to 35%
corresponds to a predicted increase in CMCR of 27 to 44 cases per 1,000 (Table 3). In other
words, the relationship between TPR and CMCR is non-linear, such that TPR below 10% sig-
nify relatively small changes in malaria case rates of less than 5 per 1,000, but relatively small
changes in TPR above 10% correlate to larger changes in estimated malaria incidence over
time.

While not the best-fitting model, a spline model with a knot set at 35% does highlight the
non-linear nature of the data. The spline model predicts a trend towards a significant increase

Table 1. Summary of diagnostic testing results by village over the 24-month study period.

Village Population Tested
(n, %)

Age <5
(n, %)

Rainy Season
(n, %)

TPR
(%)

Total
RDTs

RDT PR
(%)

Total
Slides

SPR
(%)

CMCR*

Bugoye 1,549 1,499 (96.8) 341 (22.6) 801 (53.1) 29.2 1343 28.5 201 38.8 135.7

Bunyangoni 1,644 602 (36.6) 229 (37.8) 307 (50.7) 32.1 525 20.5 89 47.2 56.4

Ihani 714 137 (19.2) 36 (26.3) 73 (53.3) 40.2 123 41.5 15 26.7 37.0

Izinga 833 900 (108.0) 254 (28.0) 489 (53.9) 52.8 787 53.6 147 55.1 273.7

Kanyanamigho 1,808 908 (50.2) 257 (28.2) 402 (44.2) 42.4 786 42.0 142 43.7 102.2

Katumba 1,110 130 (11.7) 46 (35.4) 73 (56.2) 20.8 112 18.8 19 31.6 11.7

Kibirizi 1,113 71 (6.4) 19 (26.4) 33 (45.8) 22.5 64 21.9 10 30.0 6.9

Kihindi 936 44 (4.7) 24 (53.3) 23 (51.1) 18.2 35 8.6 10 50.0 4.1

Kikokera 588 200 (34.0) 47 (23.5) 88 (44.0) 36.5 175 37.7 31 32.3 59.6

Kisamba I & II 3,280 62 (18.9) 12 (19.4) 36 (58.1) 14.5 60 13.3 2 50.0 1.3

Maghoma 2,688 108 (4.0) 48 (44.4) 61 (56.5) 16.7 99 14.1 12 33.3 3.2

Muhambo 1,272 176 (13.8) 72 (40.5) 108 (60.7) 18.2 169 18.3 12 25.0 12.1

Muramba I & II 3,576 1,303 (36.4) 381 (29.2) 701 (53.6) 37.7 1186 37.1 162 51.9 65.9

Ndughutu E &
W

2,538 815 (32.1) 274 (33.6) 432 (52.9) 31.4 723 30.0 118 46.6 48.4

Rwaking A & B 1,968 713 (36.2) 222 (31.2) 357 (50.1) 38.7 624 36.5 111 55.9 67.3

TOTAL 25,617 7,763 2,262 (29.5) 3,984 (52.0) 35.9 6811 34.3 1081 46.3 59.0

TPR = test positivity rate, RDT = rapid diagnostic test, RDT PR = rapid diagnostic test positivity rate, SPR = slide positivity rate;

*CMCR measured in annual number of malaria cases per 1,000 population.

doi:10.1371/journal.pone.0152410.t001
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Fig 1. Linear (red) and exponential (green) models of the relationship between confirmedmalaria case rate and test positivity rate at 6-month
measurement intervals.

doi:10.1371/journal.pone.0152410.g001

Table 2. Regression models of diagnostic test positivity rates (TPR) as predictors of confirmed
malaria case rate (CMCR).

Model Formula Adjusted R2 AIC

Linear y = b0 + b1(x) 0.44 680

Logarithmic y = b0 + (b1 * ln(x)) 0.25 694

Linear Spline at TPR 35% Y = bo + b1(xx<35%) + b2(xx>35%) 0.56 666

Quadratic y = b0 + b1x + b2x
2 0.58 661

Cubic y = b0 + b1x + b2x
2 + b3x

3 0.69 645

Power y = b0 * (xb1) 0.77 646

Exponential y = b0 * b1
x 0.80 637

AIC = Akaike Information Criteria.

doi:10.1371/journal.pone.0152410.t002

TPR and Malaria Incidence
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of 1.38 cases per 1,000 (95% CI -0.5–3.26, p = 0.15) for each single digit increase in the TPR at
positivity rates below 35%, but much larger, significant increase of 10.8 cases per 1,000 (95% CI
7.58–14.1, p<0.001) at TPR for rates above 35%.

Sensitivity modeling excluding the village of Izinga, which was the only point with a Cook’s
D greater than 1, did not significantly change the resulting coefficient. Additionally, we mod-
eled the relationship between malaria incidence and both the RDT and slide positivity rates.
Again, the exponential growth in CMCR remained significant, but the model fit with either the
RDT PR or SPR was inferior. These results are summarized in Table 4.

Discussion
We demonstrate an exponential, non-linear relationship between the TPR and CMCR among
a rural population in a malaria-endemic region of Western Uganda. This finding has a number
of practical implications for malaria surveillance and control programs especially at the
extremes of transmission.

The impact of the observed model is perhaps most relevant at relatively low transmission
levels, particularly when the TPR falls below 10% and the correlation between TPR and CMCR
is poor. For example, a 90% reduction in the TPR from 10% to 1% correlates with only a 56%
reduction in the CMCR from 3.9 to only 1.7 cases per 1,000. Our results would suggest that
control programs should consider more active surveillance approaches to evaluate interven-
tions in low transmission settings, especially during peak transmission periods as the pre-elimi-
nation threshold of 5% is approached.

Notwithstanding the poor correlation at low TPR, the exponential relationship makes rela-
tively minimal changes in TPR suggestive of sizeable change in estimated malaria incidence.
For example, we estimate that a similar absolute decrease in TPR from 20% to 10% corresponds
to a 62% decrease in CMCR from 10.3 to 3.9 cases per 1,000. These results demonstrate that

Table 3. Comparison of predicted confirmedmalaria case rates (CMCR) at specified test positivity
rates (TPR) using both linear and exponential growth regression models.

TPR (%) Linear Model Predicted CMCR Exponential Model Predicted CMCR

5 < 0 2.4

10 < 0 3.9

20 21.2 10.3

40 110.8 70.5

doi:10.1371/journal.pone.0152410.t003

Table 4. Sensitivity models exploring the quantitative relationship between test positivity rate (TPR) and confirmedmalaria case rate (CMCR).

Model Exponentiated Coefficient 95% CI p-value

6 Month TPR* 1.10 1.07–1.13 <0.001

24 Month TPR 1.09 1.06–1.12 <0.001

3 Month TPR*^ 1.05 1.02–1.09 <0.001

Excluding Izinga Village 1.06 1.00–1.12 <0.001

RDT PR 1.08 1.05–1.11 <0.001

SPR 1.01 1.00–1.03 <0.001

*Model adjusted for within-village clustering using robust errors.

^Model only includes villages for which at least 15 diagnostic tests were performed each quarter.

TPR = test positivity rate; RDT PR = rapid diagnostic test positivity rate; SPR = slide positivity rate.

doi:10.1371/journal.pone.0152410.t004
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changes in TPR are more predictive of CMCR when test positivity is above 15%, and that TPR
could remain a more valuable surveillance indicator in higher transmission settings.

Two of the villages in our analysis appear to be outliers from our prediction models, and
merit further examination. The first is the village of Ihani, which fell below the exponential fit
curve (Fig 2). Ihani had a disproportionately high TPR (40.2%) with a relatively low CMCR (37
per 1,000) compared to other study villages. These findings would suggest that, although the
incidence is relatively high, a significant number of malaria cases in Ihani are not being cap-
tured at the health center. Notably, of all the included villages, Ihani is closest to another Level
III health facility, and thus we suspect that some residents sought care there. If this health-seek-
ing behavior is confirmed, then the TPR-CMCR relationship could be a valuable tool in identi-
fying missed malaria cases.

In contrast, in Bugoye village we see the opposite scenario: a high CMCR (135.7 per 1,000)
with a relatively low TPR (29.2%). In this village, we observed that the number of individuals
tested as a proportion of the population in Bugoye was much higher (96.8%) than most other
villages. We suspect this was due to a misclassification bias, in that the village, parish, and sub-
county are all named Bugoye, so staff might have recorded imprecise village residence data.

Fig 2. The relationship between the confirmedmalaria case rate and test positivity rate for individual villages over the 24-month study period.

doi:10.1371/journal.pone.0152410.g002
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Our findings are largely consistent with prior work. In a well-defined cohort of Ugandan
children who were observed over a period of four years with malaria diagnostic testing for any
febrile illness, the investigators compared TPR with malaria incidence [7]. These authors con-
cluded that changes in SPR were associated with changes in malaria incidence, but, as found in
our study, the SPR and the incidence of malaria were neither linear nor proportional. In con-
trast, a large study using routinely collected data from a single county in China, where both P.
falciparum and P. vivax are present, reported a linear correlation between SPR and the malaria
case rate [15]. The SPR in this study, however, was limited to a range of values from less than
1% to approximately 14%, which was a much lower and narrower in distribution than we
observed in Uganda. As our findings demonstrate, at SPRs less than 15%, the slope of the curve
appears linear, and thus it is not surprising that a linear relationship between SPR and malaria
incidence may emerge in such a setting.

Our results were robust to multiple sensitivity analyses. The estimates were similar after
varying the measurement intervals, excluding outlying villages, and using different diagnostic
testing modalities. Importantly, there were no major changes in national policy clinic staffing,
or diagnostic testing strategies during the study observation period. Our study does have a
number of methodological limitations. First, we did not directly measure malaria incidence. As
such, we cannot be certain that (1) all suspected malaria cases presented to the health center
and (2) these individuals underwent diagnostic testing with either RDTs or microscopy.
Instead, we utilized the CMCR as a crude surrogate of malaria incidence. Given the remote
nature of the study site, the purposeful selection of villages in close proximity to the health cen-
ter, and the paucity of alternative treatment sites in the area, we believe the CMCR provides a
reasonable estimate of clinical malaria incidence. Additionally, the WHO considers CMCR as
the most important measure of progress and management in low-incidence areas [3], and thus
a greater understanding of the relationship between TPR and CMCR has significant merit for
malaria control. Second, our work is generalizable to similar areas of moderate transmission,
but should not be used to make assumptions about these relationships in other settings. Finally,
we relied on routinely collected HMIS data, which is often subject to incomplete reporting
and/or errors. However, aside from the outlier villages discussed above, we do not suspect a dif-
ferential bias that would influence our findings. Our large sample size and robustness of the
model to multiple sensitivity analyses help mitigate concern for this bias.

Conclusions
Our results demonstrate a non-linear relationship between TPR and CMCR. Malaria surveil-
lance programs utilizing the TPR to estimate and monitor malaria incidence must interpret tem-
poral changes in TPR with these findings in mind. Whereas the TPR remains an attractive
measure given its reliance on laboratory-confirmed results and ease of ascertainment, it might be
a crude reflection of changes in malaria incidence, particularly at positivity rates less than 10%.
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(PDF)
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