4 research outputs found

    First characterization of a novel grain calorimeter: the GRAiNITA prototype

    No full text
    International audienceA novel type of calorimeter based on grains of inorganicscintillating crystal readout by wave length shifting fibers isproposed. The concept and main features as well as the prototypedesign are introduced and the first results obtained using cosmicrays are presented. The number of photo-electrons generated bycosmic rays muons in the prototype detector is estimated to be ofthe order of 10000 photo-electrons per GeV, validating the conceptof this next-generation shashlik calorimeter

    Additive manufacturing of fine-granularity optically-isolated plastic scintillator elements

    No full text
    Plastic scintillator detectors are used in high energy physics as well as for diagnostic imaging in medicine, beam monitoring on hadron therapy, muon tomography, dosimetry and many security applications. To combine particle tracking and calorimetry it is necessary to build detectors with three-dimensional granularity, i.e. small voxels of scintillator optically isolated from each other. Recently, the 3DET collaboration demonstrated the possibility to 3D print polystyrene-based scintillators with a light output performance close to that obtained with standard production methods. In this article, after providing a further characterization of the developed scintillators, we show the first matrix of plastic scintillator cubes optically separated by a white reflector material entirely 3D printed with fused deposition modeling. This is a major milestone towards the 3D printing of the first real particle detector. A discussion of the results as well as the next steps in the R&D is also provided

    Additive manufacturing of fine-granularity optically-isolated plastic scintillator elements

    No full text
    Plastic scintillator detectors are used in high energy physics as well as for diagnostic imaging in medicine, beam monitoring on hadron therapy, muon tomography, dosimetry and many security applications. To combine particle tracking and calorimetry it is necessary to build detectors with three-dimensional granularity, i.e. small voxels of scintillator optically isolated from each other. Recently, the 3DET collaboration demonstrated the possibility to 3D print polystyrene-based scintillators with a light output performance close to that obtained with standard production methods. In this article, after providing a further characterization of the developed scintillators, we show the first matrix of plastic scintillator cubes optically separated by a white reflector material entirely 3D printed with fused deposition modeling. This is a major milestone towards the 3D printing of the first real particle detector. A discussion of the results as well as the next steps in the R&D is also provided.ISSN:1748-022

    Probe for LUminosity MEasurement in LHCb

    No full text
    A new detector capable of measuring the luminosity and beam conditions of the Large Hadron Collider (LHC) is proposed at the interaction point of the LHCb experiment. It will enable real time monitoring of beam parameters, which is of paramount importance in order to safely operate the LHC and its experiments in the beam conditions foreseen for Run 3, starting in 2021, and beyond, towards the High-Luminosity (HL) phase. The detector will provide both online and offline measurements with a feedback at the scale of a fraction of a second, to ensure a luminosity-leveling procedure and a real-time alarm to the LHC
    corecore