8 research outputs found
The Operculum-Plug Area and Membranous Structure of the Eggs of Trichuris Trichiura
Eggs of Trichuris trichiura were prepared for scanning electron microscopy (SEM) by the dimethylsulfoxide freeze-cracking method. The egg-shell and oocyte were examined by SEM. The egg has a chitinous shell which consists of more than 10 layers of dense lamellae. The shell is bordered by a limiting membrane. An operculum and a collar made of chitinous shell together form the opercular area. The operculum is an empty cavity. The chitinous fibers of the egg-shell in this area are diffuse and loose, with numerous micropores or spaces. The egg-shell in this area therefore appears to form a fine tubular network. The oocyte is an undifferentiated cell with a biconcave drum-like shape. The perivitelline space is conspicuous at both ends of the cell
Determination of the Five Main Terpenoids in Different Tissues of Wolfiporia cocos
Wolfiporia cocos is a fungus containing triterpenoids and is widely used as an herbal medicine. However, it is unknown whether its main triterpenoid contents differ in different tissues. In this study, we identified dehydrotumulosic acid, polyporenic acid C, pachymic acid, dehydrotrametenolic acid, and dehydroeburicoic acid as the five main triterpenoids in W. cocos. We also systematically profiled the contents and distribution of these main triterpenoids in different tissues of W. cocos. High contents of all five triterpenoids were found in the surface layer of W. cocos. Intriguingly, we noted that the highest contents of the five triterpenoids were found in the surface layer of the sclerotium grown under pollution-controlled cultivation; the second-highest contents were found in the surface layer of the natural sclerotium. These results indicate that environmentally friendly cultivation of the sclerotium of W. cocos is a practical way to increase the productivity of W. cocos. In addition, our findings suggest that the triterpenoids may contribute to the pharmacological activity of W. cocos, and the surface layer of sclerotium in W. cocos might be a promising raw material for applications in health care and the development of functional medical products