156 research outputs found

    Predicting disease progression in progressive supranuclear palsy in multicenter clinical trials

    Get PDF
    INTRODUCTION: Clinical and MRI measurements can track disease progression in PSP, but many have not been extensively evaluated in multicenter clinical trials. We identified optimal measures to capture clinical decline and predict disease progression in multicenter PSP trials. METHODS: Longitudinal clinical rating scales, neuropsychological test scores, and volumetric MRI data from an international, phase 2/3 clinical trial of davunetide for PSP (intent to treat population, n = 303) were used to identify measurements with largest effect size, strongest correlation with clinical change, and best ability to predict dropout or clinical decline over one year as measured by PSP Rating Scale (PSPRS). RESULTS: Baseline cognition as measured by Repeatable Battery for Assessing Neuropsychological Status (RBANS) was associated with attrition, but had only a small effect. PSPRS and Clinical Global Impression (CGI) had the largest effect size for measuring change. Annual change in CGI, RBANS, color trails, and MRI midbrain and ventricular volumes were most strongly correlated with annual PSPRS and had the largest effect sizes for detecting annual change. At baseline, shorter disease duration, more severe depression, and lower performance on RBANS and executive function tests were associated with faster worsening of the PSPRS in completers. With dropouts included, SEADL, RBANS, and executive function tests had significant effect on PSPRS trajectory of change. CONCLUSION: Baseline cognitive status and mood influence the rate of disease progression in PSP. Multiple clinical, neuropsychological, and volumetric MRI measurements are sensitive to change over one year in PSP and appropriate for use in multicenter clinical trials

    Vitamin D and Physical Performance in Elderly Subjects: The Pro.V.A Study

    Get PDF
    Background The role of Vitamin D in musculoskeletal functionality among elderly people is still controversial. We investigated the association between serum 25-hydroxyvitamin D (25OHD) levels and physical performance in older adults. Methods 2694 community-dwelling elderly women and men from the Progetto Veneto Anziani (Pro.V.A.) were included. Physical performances were assessed by: tandem test, 5 timed chair stands (TCS), gait speed, 6-minute walking (6 mW) distance, handgrip strength, and quadriceps strength. For each test, separate general linear models and loess plots were obtained in both genders, in relation to serum 25OHD concentrations, controlling for several potential confounders. Results Linear associations with 25OHD levels were observed for TCS, gait speed, 6 mW test and handgrip strength, but not for tandem test and quadriceps strength. After adjusting for potential confounders, linear associations with 25OHD levels were still evident for the 6 mW distance in both genders (p = .0002 in women; <.0001 in men), for TCS in women (p = .004) and for gait speed (p = .0006) and handgrip strength (p = .03) in men. In loess analyses, performance in TCS in women, in gait speed and handgrip strength in men and in 6 mW in both genders, improved with increasing levels of 25OHD, with most of the improvements occurring for 25OHD levels from 20 to 100 nmol/L. Conclusion lower 25OHD levels are associated with a worse coordination and weaker strength (TCS) in women, a slower walking time and a lower upper limb strength in men, and a weaker aerobic capacity (6 mW) in both genders. For optimal physical performances, 25OHD concentrations of 100 nmol/L appear to be more advantageous in elderly men and women, and Vitamin D supplementation should be encouraged to maintain their 25OHD levels as high as this threshold

    Severity dependent distribution of impairments in PSP and CBS: Interactive visualizations

    Get PDF
    BACKGROUND: Progressive supranuclear palsy (PSP) -Richardson's Syndrome and Corticobasal Syndrome (CBS) are the two classic clinical syndromes associated with underlying four repeat (4R) tau pathology. The PSP Rating Scale is a commonly used assessment in PSP clinical trials; there is an increasing interest in designing combined 4R tauopathy clinical trials involving both CBS and PSP. OBJECTIVES: To determine contributions of each domain of the PSP Rating Scale to overall severity and characterize the probable sequence of clinical progression of PSP as compared to CBS. METHODS: Multicenter clinical trial and natural history study data were analyzed from 545 patients with PSP and 49 with CBS. Proportional odds models were applied to model normalized cross-sectional PSP Rating Scale, estimating the probability that a patient would experience impairment in each domain using the PSP Rating Scale total score as the index of overall disease severity. RESULTS: The earliest symptom domain to demonstrate impairment in PSP patients was most likely to be Ocular Motor, followed jointly by Gait/Midline and Daily Activities, then Limb Motor and Mentation, and finally Bulbar. For CBS, Limb Motor manifested first and ocular showed less probability of impairment throughout the disease spectrum. An online tool to visualize predicted disease progression was developed to predict relative disability on each subscale per overall disease severity. CONCLUSION: The PSP Rating Scale captures disease severity in both PSP and CBS. Modelling how domains change in relation to one other at varying disease severities may facilitate detection of therapeutic effects in future clinical trials

    A randomized controlled trial on the effectiveness of strength training on clinical and muscle cellular outcomes in patients with prostate cancer during androgen deprivation therapy: rationale and design

    Get PDF
    Background Studies indicate that strength training has beneficial effects on clinical health outcomes in prostate cancer patients during androgen deprivation therapy. However, randomized controlled trials are needed to scientifically determine the effectiveness of strength training on the muscle cell level. Furthermore, close examination of the feasibility of a high-load strength training program is warranted. The Physical Exercise and Prostate Cancer (PEPC) trial is designed to determine the effectiveness of strength training on clinical and muscle cellular outcomes in non-metastatic prostate cancer patients after high-dose radiotherapy and during ongoing androgen deprivation therapy. Methods/design Patients receiving androgen deprivation therapy for 9-36 months combined with external high-dose radiotherapy for locally advanced prostate cancer are randomized to an exercise intervention group that receives a 16 week high-load strength training program or a control group that is encouraged to maintain their habitual activity level. In both arms, androgen deprivation therapy is continued until the end of the intervention period. Clinical outcomes are body composition (lean body mass, bone mineral density and fat mass) measured by Dual-energy X-ray Absorptiometry, serological outcomes, physical functioning (muscle strength and cardio-respiratory fitness) assessed with physical tests and psycho-social functioning (mental health, fatigue and health-related quality of life) assessed by questionnaires. Muscle cellular outcomes are a) muscle fiber size b) regulators of muscle fiber size (number of myonuclei per muscle fiber, number of satellite cells per muscle fiber, number of satellite cells and myonuclei positive for androgen receptors and proteins involved in muscle protein degradation and muscle hypertrophy) and c) regulators of muscle fiber function such as proteins involved in cellular stress and mitochondrial function. Muscle cellular outcomes are measured on muscle cross sections and muscle homogenate from muscle biopsies obtained from muscle vastus lateralis. Discussion The findings from the PEPC trial will provide new knowledge on the effects of high-load strength training on clinical and muscle cellular outcomes in prostate cancer patients during androgen deprivation therapy. Trial registration ClinicalTrials.gov: NCT0065822

    Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia

    Get PDF
    Corticobasal degeneration (CBD), progressive supranuclear palsy (PSP) and a subset of frontotemporal dementia (FTD) are neurodegenerative disorders characterized by tau inclusions in neurons and glia (tauopathies). Although clinical, pathological and genetic evidence suggests overlapping pathobiology between CBD, PSP, and FTD, the relationship between these disorders is still not well understood. Using summary statistics (odds ratios and p values) from large genome-wide association studies (total n = 14,286 cases and controls) and recently established genetic methods, we investigated the genetic overlap between CBD and PSP and CBD and FTD. We found up to 800-fold enrichment of genetic risk in CBD across different levels of significance for PSP or FTD. In addition to NSF (tagging the MAPT H1 haplotype), we observed that SNPs in or near MOBP, CXCR4, EGFR, and GLDC showed significant genetic overlap between CBD and PSP, whereas only SNPs tagging the MAPT haplotype overlapped between CBD and FTD. The risk alleles of the shared SNPs were associated with expression changes in cis-genes. Evaluating transcriptome levels across adult human brains, we found a unique neuroanatomic gene expression signature for each of the five overlapping gene loci (omnibus ANOVA p < 2.0 × 10−16). Functionally, we found that these shared risk genes were associated with protein interaction and gene co-expression networks and showed enrichment for several neurodevelopmental pathways. Our findings suggest: (1) novel genetic overlap between CBD and PSP beyond the MAPT locus; (2) strong ties between CBD and FTD through the MAPT clade, and (3) unique combinations of overlapping genes that may, in part, influence selective regional or neuronal vulnerability observed in specific tauopathies

    Cosmogenic production of {37}^Ar in the context of the LUX-ZEPLIN experiment

    Get PDF
    We estimate the amount of {37}^Ar produced in natural xenon via cosmic-ray-induced spallation, an inevitable consequence of the transportation and storage of xenon on the Earth’s surface. We then calculate the resulting {37}^Ar concentration in a 10-tonne payload (similar to that of the LUX-ZEPLIN experiment) assuming a representative schedule of xenon purification, storage, and delivery to the underground facility. Using the spallation model by Silberberg and Tsao, the sea-level production rate of {37}^Ar in natural xenon is estimated to be 0.024 atoms/kg/day. Assuming the xenon is successively purified to remove radioactive contaminants in 1-tonne batches at a rate of 1 tonne/month, the average {37}^Ar activity after 10 tons are purified and transported underground is 0.058 - 0.090 μ Bq/kg, depending on the degree of argon removal during above-ground purification. Such cosmogenic {37}^Ar will appear as a noticeable background in the early science data, while decaying with a 35-day half-life. This newly noticed production mechanism of {37}^Ar should be considered when planning for future liquid-xenon-based experiments

    Projected sensitivity of the LUX-ZEPLIN experiment to the two-neutrino and neutrinoless double β decays of Xe 134

    Get PDF
    The projected sensitivity of the LUX-ZEPLIN (LZ) experiment to two-neutrino and neutrinoless double β decay of Xe134 is presented. LZ is a 10-tonne xenon time-projection chamber optimized for the detection of dark matter particles and is expected to start operating in 2021 at Sanford Underground Research Facility, USA. Its large mass of natural xenon provides an exceptional opportunity to search for the double β decay of Xe134, for which xenon detectors enriched in Xe136 are less effective. For the two-neutrino decay mode, LZ is predicted to exclude values of the half-life up to 1.7×1024 years at 90% confidence level (CL) and has a three-sigma observation potential of 8.7×1023 years, approaching the predictions of nuclear models. For the neutrinoless decay mode LZ, is projected to exclude values of the half-life up to 7.3×1024 years at 90% CL

    Projected sensitivities of the LUX-ZEPLIN experiment to new physics via low-energy electron recoils

    Get PDF
    LUX-ZEPLIN is a dark matter detector expected to obtain world-leading sensitivity to weakly-interacting massive particles interacting via nuclear recoils with a ∼ 7 -tonne xenon target mass. This paper presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic moment, and 2) an effective neutrino millicharge, both for p p -chain solar neutrinos, 3) an axion flux generated by the Sun, 4) axionlike particles forming the Galactic dark matter, 5) hidden photons, 6) mirror dark matter, and 7) leptophilic dark matter. World-leading sensitivities are expected in each case, a result of the large 5.6 t 1000 d exposure and low expected rate of electron-recoil backgrounds in the < 100     keV energy regime. A consistent signal generation, background model and profile-likelihood analysis framework is used throughout
    • …
    corecore