11,997 research outputs found

    Mathieu beams as versatile light moulds for 3D micro particle assemblies

    Get PDF
    We present tailoring of three dimensional light fields which act as light moulds for elaborate particle micro structures of variable shapes. Stereo microscopy is used for visualization of the 3D particle assemblies. The powerful method is demonstrated for the class of propagation invariant beams, where we introduce the use of Mathieu beams as light moulds with non-rotationally-symmetric structure. They offer multifarious field distributions and facilitate the creation of versatile particle structures. This general technique may find its application in micro fluidics, chemistry, biology, and medicine, to create highly efficient mixing tools, for hierarchical supramolecular organization or in 3D tissue engineering

    Exact quantum quasiclassical, and semiclassical reaction probabilities for the collinear F+D_2 → FD+D reaction

    Get PDF
    Exact quantum, quasiclassical, and semiclassical reaction probabilities and rate constants for the collinear reaction F+D_2 → FD+D are presented. In all calculations, a high degree of population inversion is predicted with P^R_(03) and P^R(04) being the dominant reaction probabilities. In analogy with the F+H_2 reaction (preceding paper), the exact quantum 0→3 and 0→4 probabilities show markedly different energy dependence with PR03 having a much smaller effective threshold energy (E_T=0.014 eV) than P^R_(04) (0.055 eV). The corresponding quasiclassical forward probabilities P^R_(03) and P^R_(04) are in poor agreement with the exact quantum ones, while their quasiclassical reverse and semiclassical counterparts provide much better approximations to the exact results. Similar comparisons are also made in the analysis of the corresponding EQ, QCF, QCR, and USC rate constants. An information theoretic analysis of the EQ and QCF reaction probabilities indicates nonlinear surprisal behavior as well as a significant isotope dependence. Additional quantum results at higher energies are presented and discussed in terms of threshold behavior and resonances. Exact quantum reaction probabilities for the related F+HD → FH+D and F+DH → FD+H reactions are given and an attempt to explain the observed isotope effects is made

    Large quantum effects in the collinear F+H2-->FH+H reaction

    Get PDF
    We have performed accurate quantum mechanical calculations of reaction probabilities for the collinear F+H2-->FH+H reaction as well as corresponding quasiclassical trajectory calculations. A comparison of these results shows that very significant quantum mechanical effects are present in this reaction

    A parametric shell analysis of the shuttle 51-L SRB AFT field joint

    Get PDF
    Following the Shuttle 51-L accident, an investigation was conducted to determine the cause of the failure. Investigators at the Langley Research Center focused attention on the structural behavior of the field joints with O-ring seals in the steel solid rocket booster (SRB) cases. The shell-of-revolution computer program BOSOR4 was used to model the aft field joint of the solid rocket booster case. The shell model consisted of the SRB wall and joint geometry present during the Shuttle 51-L flight. A parametric study of the joint was performed on the geometry, including joint clearances, contact between the joint components, and on the loads, induced and applied. In addition combinations of geometry and loads were evaluated. The analytical results from the parametric study showed that contact between the joint components was a primary contributor to allowing hot gases to blow by the O-rings. Based upon understanding the original joint behavior, various proposed joint modifications are shown and analyzed in order to provide additional insight and information. Finally, experimental results from a hydro-static pressurization of a test rocket booster case to study joint motion are presented and verified analytically

    Structural characterization of Si(m)Ge(n) strained layer superlattices

    Get PDF
    SimGen strained layer superlattice (SLS) structures were grown by molecular beam epitaxy on GexSi1-x buffer layers on Si substrates to determine the effects of buffer layer composition, SLS thickness ratio, and superlattice periodicity, on the overall quality of these structures. X-ray diffraction methods were used to determine how closely actual periodicities and compositions met targeted values, and to evaluate the quality of these samples. In most instances the as-grown structures matched the targeted values to within 10%, though in some instances deviations of 20-25% in either the period or composition were observed. The quality of the SLS structures was greatly dependent on the composition of the buffer layer on which it was grown. SimGen SLS structures grown on Si- and Ge-rich buffer layers were of much higher quality than SimGem SLSs grown on Ge0.50Si0.50 layers, but the x-ray rocking curves of the SimGen samples indicated that they were far from perfect and contained moderate levels of defects. These results were confirmed by cross sectional transmission electron microscopy, which showed that the SimGem structures contained significant numbers of dislocations and that the layers were nonuniform in thickness and wavy in appearance. SimGen structures, however, displayed fewer defects but some dislocations and nonparallelism of layers were still observed

    Sensory over-responsivity and social cognition in ASD: Effects of aversive sensory stimuli and attentional modulation on neural responses to social cues.

    Get PDF
    Sensory over-responsivity (SOR) is a common condition in autism spectrum disorders (ASD) that is associated with greater social impairment. However, the mechanisms through which sensory stimuli may affect social functioning are not well understood. This study used fMRI to examine brain activity while interpreting communicative intent in 15 high-functioning youth with ASD and 16 age- and IQ-matched typically-developing (TD) controls. Participants completed the task with and without a tactile sensory distracter, and with and without instructions directing their attention to relevant social cues. When completing the task in the presence of the sensory distracter, TD youth showed increased activity in auditory language and frontal regions whereas ASD youth showed decreased activation in these areas. Instructions mitigated this effect such that ASD youth did not decrease activation during tactile stimulation; instead, the ASD group showed increased medial prefrontal activity. SOR severity modulated the effect of the tactile stimulus on social processing. Results demonstrate for the first time a neural mechanism through which sensory stimuli cause disruption of social cognition, and that attentional modulation can restore neural processing of social cues through prefrontal regulation. Findings have implications for novel, integrative interventions that incorporate attentional directives to target both sensory and social symptoms
    • …
    corecore