8,310 research outputs found

    Quantitative estimates of relationships between geomagnetic activity and equatorial spread-F as determined by TID occurrence levels

    Get PDF
    Using a world-wide set of stations for 15 years, quantitative estimates of changes to equatorial spread-F (ESF) occurrence rates obtained from ionogram scalings, have been determined for a range of geomagnetic activity (GA) levels, as well as for four different levels of solar activity. Average occurrence rates were used as a reference. The percentage changes vary significantly depending on these subdivisions. For example for very high GA the inverse association is recorded by a change of -33% for R-z greater than or equal to 150, and -10% for R-z < 50. Using data for 9 years for the equatorial station, Huancayo, these measurements of ESF which indicate the presence of TIDs, have also been investigated by somewhat similar analyses. Additional parameters were used which involved the local times of GA, with the ESF being examined separately for occurrence pre-midnight (PM) and after-midnight (AM). Again the negative changes were most pronounced for high GA in R-z-max years (-21%). This result is for PM ESF for GA at a local time of 1700. There were increased ESF levels (+31%) for AM ESF in R-z-min years for high GA around 2300 LT. This additional knowledge of the influence of GA on ESF occurrence involving not only percentage changes, but these values for a range of parameter levels, may be useful if ever short-term forecasts are needed. There is some discussion on comparisons which can be made between ESF results obtained by coherent scatter from incoherent-scatter equipment and those obtained by ionosondes

    Modelling the impact of liner shipping network perturbations on container cargo routing: Southeast Asia to Europe application

    Get PDF
    Understanding how container routing stands to be impacted by different scenarios of liner shipping network perturbations such as natural disasters or new major infrastructure developments is of key importance for decision-making in the liner shipping industry. The variety of actors and processes within modern supply chains and the complexity of their relationships have previously led to the development of simulation-based models, whose application has been largely compromised by their dependency on extensive and often confidential sets of data. This study proposes the application of optimisation techniques less dependent on complex data sets in order to develop a quantitative framework to assess the impacts of disruptive events on liner shipping networks. We provide a categorization of liner network perturbations, differentiating between systemic and external and formulate a container assignment model that minimises routing costs extending previous implementations to allow feasible solutions when routing capacity is reduced below transport demand. We develop a base case network for the Southeast Asia to Europe liner shipping trade and review of accidents related to port disruptions for two scenarios of seismic and political conflict hazards. Numerical results identify alternative routing paths and costs in the aftermath of port disruptions scenarios and suggest higher vulnerability of intra-regional connectivity

    Associations involving delays (particularly long delays) between certain weather parameters and geomagnetic activity

    Get PDF
    Four sunspot-minimum periods (1963-1966, 1971-1977, 1983-1987 and 1992-1997) have been examined for the results which are presented. Using several different weather parameters, tropospheric gravity waves, enhanced cold fronts and two rainfall data sets in Eastern Australia, associations at reasonably high levels of significance have been found with enhanced geomagnetic activity (EGA). Statistically this EGA involved either short delays of several days or long delays of about 20 days. The geomagnetic parameters used were (a) the AE index (b) the hourly H component for a number of stations and (c) the daily K-P-sum value. The K-P-sum analyses have shown that the EGA associated with the delays form part of four or five cycles of recurrent geomagnetic activity for 27-day periodicities. Furthermore statistically two recurrent cycles are found to exist concurrently, one apparently related to the short delays and the other to the long delays. Periodicities of 13.5 days are created because the two sets are displaced from each other by approximately this interval. A brief reference is made to the 13.5 periodicity known to exist for geomagnetic activity and the evidence in the literature for active regions on the sun to be displaced by 180 degrees of solar longitude

    Computational science and re-discovery: open-source implementations of ellipsoidal harmonics for problems in potential theory

    Full text link
    We present two open-source (BSD) implementations of ellipsoidal harmonic expansions for solving problems of potential theory using separation of variables. Ellipsoidal harmonics are used surprisingly infrequently, considering their substantial value for problems ranging in scale from molecules to the entire solar system. In this article, we suggest two possible reasons for the paucity relative to spherical harmonics. The first is essentially historical---ellipsoidal harmonics developed during the late 19th century and early 20th, when it was found that only the lowest-order harmonics are expressible in closed form. Each higher-order term requires the solution of an eigenvalue problem, and tedious manual computation seems to have discouraged applications and theoretical studies. The second explanation is practical: even with modern computers and accurate eigenvalue algorithms, expansions in ellipsoidal harmonics are significantly more challenging to compute than those in Cartesian or spherical coordinates. The present implementations reduce the "barrier to entry" by providing an easy and free way for the community to begin using ellipsoidal harmonics in actual research. We demonstrate our implementation using the specific and physiologically crucial problem of how charged proteins interact with their environment, and ask: what other analytical tools await re-discovery in an era of inexpensive computation?Comment: 25 pages, 3 figure

    Rashba coupling in quantum dots: exact solution

    Get PDF
    We present an analytic solution to the problem of the Rashba spin-orbit coupling in semiconductor quantum dots. We calculate the exact energy spectrum, wave-functions, and spin--flip relaxation times. We discuss various effects inaccessible via perturbation theory. In particular, we find that the effective gyromagnetic ratio is strongly suppressed by the spin-orbit coupling. The spin-flip relaxation rate has a maximum as a function of the spin-orbit coupling and is therefore suppressed in both the weak- and strong coupling limits.Comment: 5 pages, 4 figs, reference adde

    An Exactly Conservative Integrator for the n-Body Problem

    Get PDF
    The two-dimensional n-body problem of classical mechanics is a non-integrable Hamiltonian system for n > 2. Traditional numerical integration algorithms, which are polynomials in the time step, typically lead to systematic drifts in the computed value of the total energy and angular momentum. Even symplectic integration schemes exactly conserve only an approximate Hamiltonian. We present an algorithm that conserves the true Hamiltonian and the total angular momentum to machine precision. It is derived by applying conventional discretizations in a new space obtained by transformation of the dependent variables. We develop the method first for the restricted circular three-body problem, then for the general two-dimensional three-body problem, and finally for the planar n-body problem. Jacobi coordinates are used to reduce the two-dimensional n-body problem to an (n-1)-body problem that incorporates the constant linear momentum and center of mass constraints. For a four-body choreography, we find that a larger time step can be used with our conservative algorithm than with symplectic and conventional integrators.Comment: 17 pages, 3 figures; to appear in J. Phys. A.: Math. Ge

    LiSc(BH_4)_4 as a Hydrogen Storage Material: Multinuclear High-Resolution Solid-State NMR and First-Principles Density Functional Theory Studies

    Get PDF
    A lithium salt of anionic scandium tetraborohydride complex, LiSc(BH_4)_4, was studied both experimentally and theoretically as a potential hydrogen storage medium. Ball milling mixtures of LiBH_4 and ScCl_3 produced LiCl and a unique crystalline hydride, which has been unequivocally identified via multinuclear solid-state nuclear magnetic resonance (NMR) to be LiSc(BH_4)_4. Under the present reaction conditions, there was no evidence for the formation of binary Sc(BH_4)_3. These observations are in agreement with our first-principles calculations of the relative stabilities of these phases. A tetragonal structure in space group I (#82) is predicted to be the lowest energy state for LiSc(BH_4)_4, which does not correspond to structures obtained to date on the crystalline ternary borohydride phases made by ball milling. Perhaps reaction conditions are resulting in formation of other polymorphs, which should be investigated in future studies via neutron scattering on deuterides. Hydrogen desorption while heating these Li−Sc−B−H materials up to 400 °C yielded only amorphous phases (besides the virtually unchanged LiCl) that were determined by NMR to be primarily ScB_2 and [B_(12)H_(12)]^(−2) anion containing (e.g., Li_2B_(12)H_(12)) along with residual LiBH_4. Reaction of a desorbed LiSc(BH_4)_4 + 4LiCl mixture (from 4LiBH_4/ScCl_3 sample) with hydrogen gas at 70 bar resulted only in an increase in the contents of Li_2B_(12)H_(12) and LiBH_4. Full reversibility to reform the LiSc(BH_4)_4 was not found. Overall, the Li−Sc−B−H system is not a favorable candidate for hydrogen storage applications

    Myeloid DAP12-associating lectin (MDL)-1 regulates synovial inflammation and bone erosion associated with autoimmune arthritis.

    Get PDF
    DNAX adaptor protein 12 (DAP12) is a trans-membrane adaptor molecule that transduces activating signals in NK and myeloid cells. Absence of functional Dap12 results in osteoclast defects and bone abnormalities. Because DAP12 has no extracelluar binding domains, it must pair with cell surface receptors for signal transduction. There are at least 15 known DAP12-associating cell surface receptors with distinct temporal and cell type-specific expression patterns. Our aim was to determine which receptors may be important in DAP12-associated bone pathologies. Here, we identify myeloid DAP12-associating lectin (MDL)-1 receptor (also known as CLEC5A) as a key regulator of synovial injury and bone erosion during autoimmune joint inflammation. Activation of MDL-1 leads to enhanced recruitment of inflammatory macrophages and neutrophils to the joint and promotes bone erosion. Functional blockade of MDL-1 receptor via Mdl1 deletion or treatment with MDL-1-Ig fusion protein reduces the clinical signs of autoimmune joint inflammation. These findings suggest that MDL-1 receptor may be a therapeutic target for treatment of immune-mediated skeletal disorders
    corecore