8,061 research outputs found

    Toward Empirical Constraints on the Global Redshifted 21 cm Brightness Temperature During the Epoch of Reionization

    Full text link
    Preliminary results are presented from a simple, single-antenna experiment designed to measure the all-sky radio spectrum between 100 and 200 MHz. The system used an internal comparison-switching scheme to reduce non-smooth instrumental contaminants in the measured spectrum to 75 mK. From the observations, we place an initial upper limit of 450 mK on the relative brightness temperature of the redshifted 21 cm contribution to the spectrum due to neutral hydrogen in the intergalactic medium (IGM) during the epoch of reionization, assuming a rapid transition to a fully ionized IGM at a redshift of 8. With refinement, this technique should be able to distinguish between slow and fast reionization scenarios. To constrain the duration of reionization to dz > 2, the systematic residuals in the measured spectrum must be reduced to 3 mK.Comment: Submitted to ApJ. 9 pages including 6 figure

    Nearby Doorways, Parity Doublets and Parity Mixing in Compound Nuclear States

    Get PDF
    We discuss the implications of a doorway state model for parity mixing in compound nuclear states. We argue that in order to explain the tendency of parity violating asymmetries measured in 233^{233}Th to have a common sign, doorways that contribute to parity mixing must be found in the same energy neighbourhood of the measured resonance. The mechanism of parity mixing in this case of nearby doorways is closely related to the intermediate structure observed in nuclear reactions in which compound states are excited. We note that in the region of interest (233^{233}Th) nuclei exhibit octupole deformations which leads to the existence of nearby parity doublets. These parity doublets are then used as doorways in a model for parity mixing. The contribution of such mechanism is estimated in a simple model.Comment: 11 pages, REVTE

    Graphics for uncertainty

    Get PDF
    Graphical methods such as colour shading and animation, which are widely available, can be very effective in communicating uncertainty. In particular, the idea of a ‘density strip’ provides a conceptually simple representation of a distribution and this is explored in a variety of settings, including a comparison of means, regression and models for contingency tables. Animation is also a very useful device for exploring uncertainty and this is explored particularly in the context of flexible models, expressed in curves and surfaces whose structure is of particular interest. Animation can further provide a helpful mechanism for exploring data in several dimensions. This is explored in the simple but very important setting of spatiotemporal data

    Use of evidence to support healthy public policy: a policy effectiveness-feasibility loop

    Get PDF
    Public policy plays a key role in improving population health and in the control of diseases, including non-communicable diseases. However, an evidence-based approach to formulating healthy public policy has been difficult to implement, partly on account of barriers that hinder integrated work between researchers and policy-makers. This paper describes a “policy effectiveness–feasibility loop” (PEFL) that brings together epidemiological modelling, local situation analysis and option appraisal to foster collaboration between researchers and policy-makers. Epidemiological modelling explores the determinants of trends in disease and the potential health benefits of modifying them. Situation analysis investigates the current conceptualization of policy, the level of policy awareness and commitment among key stakeholders, and what actually happens in practice, thereby helping to identify policy gaps. Option appraisal integrates epidemiological modelling and situation analysis to investigate the feasibility, costs and likely health benefits of various policy options. The authors illustrate how PEFL was used in a project to inform public policy for the prevention of cardiovascular diseases and diabetes in four parts of the eastern Mediterranean. They conclude that PEFL may offer a useful framework for researchers and policy-makers to successfully work together to generate evidence-based policy, and they encourage further evaluation of this approach

    Evaluation of joint probability density function models for turbulent nonpremixed combustion with complex chemistry

    Get PDF
    Two types of mixing sub-models are evaluated in connection with a joint-scalar probability density function method for turbulent nonpremixed combustion. Model calculations are made and compared to simulation results for homogeneously distributed methane-air reaction zones mixing and reacting in decaying turbulence within a two-dimensional enclosed domain. The comparison is arranged to ensure that both the simulation and model calculations a) make use of exactly the same chemical mechanism, b) do not involve non-unity Lewis number transport of species, and c) are free from radiation loss. The modified Curl mixing sub-model was found to provide superior predictive accuracy over the simple relaxation-to-mean submodel in the case studied. Accuracy to within 10-20% was found for global means of major species and temperature; however, nitric oxide prediction accuracy was lower and highly dependent on the choice of mixing sub-model. Both mixing submodels were found to produce non-physical mixing behavior for mixture fractions removed from the immediate reaction zone. A suggestion for a further modified Curl mixing sub-model is made in connection with earlier work done in the field

    Theory of parity violation in compound nuclear states; one particle aspects

    Full text link
    In this work we formulate the reaction theory of parity violation in compound nuclear states using Feshbach's projection operator formalism. We derive in this framework a complete set of terms that contribute to the longitudinal asymmetry measured in experiments with polarized epithermal neutrons. We also discuss the parity violating spreading width resulting from this formalism. We then use the above formalism to derive expressions which hold in the case when the doorway state approximation is introduced. In applying the theory we limit ourselves in this work to the case when the parity violating potential and the strong interaction are one-body. In this approximation, using as the doorway the giant spin-dipole resonance and employing well known optical potentials and a time-reversal even, parity odd one-body interaction we calculate or estimate the terms we derived. In our calculations we explicitly orthogonalize the continuum and bound wave functions. We find the effects of orthogonalization to be very important. Our conclusion is that the present one-body theory cannot explain the average longitudinal asymmetry found in the recent polarized neutron experiments. We also confirm the discrepancy, first pointed out by Auerbach and Bowman, that emerges, between the calculated average asymmetry and the parity violating spreading width, when distant doorways are used in the theory.Comment: 37 pages, REVTEX, 5 figures not included (Postscript, available from the authors
    corecore