397 research outputs found

    Black and White Attorneys’ Perspectives on Race, the Legal System, and Continuing Legal Education

    Get PDF
    This paper summarizes the findings of a qualitative study which sought to determine Black and White attorneys’ perspectives on race, the legal system, and their level of support for the inclusion of race-related topics in continuing legal education (CLE). The White attorneys were supportive of the status quo. The Black attorneys agreed that CLE should address the issue of race and that the status quo was not acceptable

    Parity Violation in Neutron Capture Reactions

    Get PDF
    In the last decade, the scattering of polarized neutrons on compound nucleus resonances proved to be a powerful experimental technique for probing nuclear parity violation. Longitudinal analyzing powers in neutron transmission measurements on p-wave resonances in nuclei such as 139^{139}La and 232^{232}Th were found to be as large as 10%. Here we examine the possibilities of carrying out a parallel program to measure asymmetries in the (n,γ(n,\gamma) reaction on these same compound nuclear resonances. Symmetry-violating (n,γ(n,\gamma) studies can also show asymmetries as large as 10%, and have the advantage over transmission experiments of allowing parity-odd asymmetries in several different gamma-decay branches from the same resonance. Thus, studies of parity violation in the (n,γ)(n,\gamma) reaction using high efficiency germanium detectors at the Los Alamos Lujan facility, for example, could determine the parity-odd nucleon-nucleon matrix elements in complex nuclei with high accuracy. Additionally, simultaneous studies of the E1 and VPNCV_{PNC} matrix elements invol ved in these decays could be used to help constrain the statistical theory of parity non-conservation in compound nuclei.Comment: 10 pages, 1 figur

    Lowland river responses to intraplate tectonism and climate forcing quantified with luminescence and cosmogenic 10Be

    Get PDF
    Intraplate tectonism has produced large-scale folding that steers regional drainage systems, such as the 1600 km-long Cooper Ck, en route to Australia’s continental depocentre at Lake Eyre. We apply cosmogenic 10Be exposure dating in bedrock, and luminescence dating in sediment, to quantify the erosional and depositional response of Cooper Ck where it incises the rising Innamincka Dome. The detachment of bedrock joint-blocks during extreme floods governs the minimum rate of incision (17.4±6.5 mm/ky) estimated using a numerical model of episodic erosion calibrated with our 10Be measurements. The last big-flood phase occurred no earlier than ~112–121ka. Upstream of the Innamincka Dome long-term rates of alluvial deposition, partly reflecting synclinal-basin subsidence, are estimated from 47 luminescence dates in sediments accumulated since ~270 ka. Sequestration of sediment in subsiding basins such as these may account for the lack of Quaternary accumulation in Lake Eyre, and moreover suggests that notions of a single primary depocentre at base-level may poorly represent lowland, arid-zone rivers. Over the period ~75–55 ka Cooper Ck changed from a bedload- dominant, laterally-active meandering river to a muddy anabranching channel network up to 60 km wide. We propose that this shift in river pattern was a product of base-level rise linked with the slowly deforming syncline–anticline structure, coupled with a climate-forced reduction in discharge. The uniform valley slope along this subsiding alluvial and rising bedrock system represents an adjustment between the relative rates of deformation and the ability of greatly enhanced flows at times during the Quaternary to incise the rising anticline. Hence, tectonic and climate controls are balanced in the long term

    A Study of Single-Particle Parity-Nonconserving Nuclear Matrix Elements

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    A Study of Single-Particle Parity-Nonconserving Nuclear Matrix Elements

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Theory of parity violation in compound nuclear states; one particle aspects

    Full text link
    In this work we formulate the reaction theory of parity violation in compound nuclear states using Feshbach's projection operator formalism. We derive in this framework a complete set of terms that contribute to the longitudinal asymmetry measured in experiments with polarized epithermal neutrons. We also discuss the parity violating spreading width resulting from this formalism. We then use the above formalism to derive expressions which hold in the case when the doorway state approximation is introduced. In applying the theory we limit ourselves in this work to the case when the parity violating potential and the strong interaction are one-body. In this approximation, using as the doorway the giant spin-dipole resonance and employing well known optical potentials and a time-reversal even, parity odd one-body interaction we calculate or estimate the terms we derived. In our calculations we explicitly orthogonalize the continuum and bound wave functions. We find the effects of orthogonalization to be very important. Our conclusion is that the present one-body theory cannot explain the average longitudinal asymmetry found in the recent polarized neutron experiments. We also confirm the discrepancy, first pointed out by Auerbach and Bowman, that emerges, between the calculated average asymmetry and the parity violating spreading width, when distant doorways are used in the theory.Comment: 37 pages, REVTEX, 5 figures not included (Postscript, available from the authors

    Association of FCGR3A and FCGR3B haplotypes with rheumatoid arthritis and primary Sjögren's syndrome [POSTER PRESENTATION]

    Get PDF
    Background Rheumatoid arthritis (RA) is an autoimmune disease that is thought to arise from a complex interaction between multiple genetic factors and environmental triggers. We have previously demonstrated an association between a Fc gamma receptor (FcγR) haplotype and RA in a cross-sectional cohort of RA patients. We have sought to confirm this association in an inception cohort of RA patients and matched controls. We also extended our study to investigate a second autoanti-body associated rheumatic disease, primary Sjögren's syndrome (PSS). Methods The FCGR3A-158F/V and FCGR3B-NA1/NA2 functional polymorphisms were examined for association in an inception cohort of RA patients (n = 448), and a well-characterised PSS cohort (n = 83) from the United Kingdom. Pairwise disequilibrium coefficients (D') were calculated in 267 Blood Service healthy controls. The EHPlus program was used to estimate haplotype frequencies for patients and controls and to determine whether significant linkage disequilibrium was present. A likelihood ratio test is performed to test for differences between the haplotype frequencies in cases and controls. A permutation procedure implemented in this program enabled 1000 permutations to be performed on all haplotype associations to assess significance. Results There was significant linkage disequilibrium between FCGR3A and FCGR3B (D' = -0.445, P = 0.001). There was no significant difference in the FCGR3A or FCGR3B allele or genotype frequencies in the RA or PSS patients compared with controls. However, there was a significant difference in the FCGR3A-FCGR3B haplotype distributions with increased homozygosity for the FCGR3A-FCGR3B 158V-NA2 haplotype in both our inception RA cohort (odds ratio = 2.15, 95% confidence interval = 1.1–4.2 P = 0.027) and PSS (odds ratio = 2.83, 95% confidence interval = 1.0–8.2, P = 0.047) compared with controls. The reference group for these analyses comprised individuals who did not possess a copy of the FCGR3A-FCGR3B 158V-NA2 haplotype. Conclusions We have confirmed our original findings of association between the FCGR3A-FCGR3B 158V-NA2 haplotype and RA in a new inception cohort of RA patients. This suggests that there may be an RA-susceptibility gene at this locus. The significant increased frequency of an identical haplotype in PSS suggests the FcγR genetic locus may contribute to the pathogenesis of diverse autoantibody-mediated rheumatic diseases

    Fine Structure Discussion of Parity-Nonconserving Neutron Scattering at Epithermal Energies

    Full text link
    The large magnitude and the sign correlation effect in the parity non-conserving resonant scattering of epithermal neutrons from 232^{232}Th is discussed in terms of a non-collective 2p−1h2p-1h local doorway model. General conclusions are drawn as to the probability of finding large parity violation effects in other regions of the periodic table.Comment: 6 pages, Tex. CTP# 2296, to appear in Z. Phys.

    Parity Nonconservation in Neutron Resonances in 133Cs

    Full text link
    Spatial parity nonconservation (PNC) has been studied in the compound-nuclear states of 134Cs by measuring the helicity dependence of the neutron total cross section. Transmission measurements on a thick 133Cs target were performed by the time-of-flight method at the Manuel Lujan Neutron Scattering Center with a longitudinally polarized neutron beam in the energy range from 5 to 400 eV. A total of 28 new p-wave resonances were found, their neutron widths determined, and the PNC longitudinal asymmetries of the resonance cross sections measured. The value obtained for the root-mean-square PNC element M=(0.06-0.02+0.25) meV in 133Cs is the smallest among all targets studied. This value corresponds to a weak spreading width Γw=(0.006-0.003+0.154)×10-7 eV
    • …
    corecore