51 research outputs found

    Scaling isoprene fluxes from leaves to canopies: test cases over a boreal aspen and a mixed species temperate forest

    No full text
    The rate at which isoprene is emitted by a forest depends on an array of environmental variables, the forest’s biomass, and its species composition. At present it is unclear whether errors in canopy-scale and process-level isoprene emission models are due to inadequacies in leaf-to-canopy integration theory or the imperfect assessment of the isoprene-emitting biomass in the flux footprint. To address this issue, an isoprene emission model (CAN- VEG) was tested over a uniform aspen stand and a mixed-species, broad-leaved forest. The isoprene emission model consists of coupled micrometeorological and physiological modules. The mi- crometeorological module computes leaf and soil energy exchange, turbulent diffusion, scalar concentration profiles, and radiative transfer through the canopy. Environmental variables that are computed by the micro- meteorological module, in turn, drive physiological modules that calculate leaf photosynthesis, stomatal con- ductance, transpiration and leaf, bole and soil/root respiration, and rates of isoprene emission. The isoprene emission model accurately predicted the diurnal variation of isoprene emission rates over the boreal aspen stand, as compared with micrometeorological flux measurements. The model’s ability to simulate isoprene emission rates over the mixed temperate forest, on the other hand, depended strongly upon the amount of isoprene-emitting biomass, which, in a mixed-species forest, is a function of the wind direction and the horizontal dimensions of the flux footprint. When information on the spatial distribution of biomass and the flux footprint probability distribution function were included, the CANVEG model produced values of isoprene emission that compared well with micrometeorological measurements. The authors conclude that a mass and energy exchange model, which couples flows of carbon, water, and nutrients, can be a reliable tool for integrating leaf-scale, isoprene emission algorithms to the canopy dimension over dissimilar vegetation types as long as the vegetation is characterized appropriately

    Invasion of shrublands by exotic grasses: ecohydrological consequences in cold versus warm deserts

    No full text
    Across the globe, native savannas and woodlands are undergoing conversion to exotic grasslands. Here we summarize the current state of knowledge concerning the ecohydrological consequences of this conversion for the cold deserts (Great Basin, Colorado Plateau) and the warm deserts (Mojave, Sonoran, Chihuahuan) of North America. Our analysis is based on a synthesis of relevant literature, complemented by simulation modelling with a one-dimensional, soil water redistribution model (HYDRUS-1D) and a hillslope runoff and erosion model (MAHLERAN). When shrublands are invaded by grasses, many changes take place: rooting depths, canopy cover, species heterogeneity, water use, and fire regimes are radically altered. These changes then have the potential to alter key ecohydrological processes. With respect to the processes of runoff and erosion, we find that grass invasion influences cold and warm deserts in different ways. In cold deserts, runoff and erosion will increase following invasion; in particular, erosion on steep slopes (>15%) will be greatly accelerated following burning. In addition, evapotranspiration (ET) will be lower and soil water recharge will be higher—which after several decades could affect groundwater levels. For warm deserts, grass invasion may actually reduce runoff and erosion (except for periods immediately following fire), and is likely to have little effect on either ET fluxes or soil water. Significant gaps in our knowledge do remain, primarily because there have been no comprehensive studies measuring all components of the water and energy budgets at multiple scales. How these changes may affect regional energy budgets, and thus weather patterns, is not yet well understood
    • …
    corecore