99 research outputs found

    Magnetic and petrologic characterization of synthetic Martian basalts and implications for the surface magnetization of Mars

    Get PDF
    A suite of synthetic Martian basalts is generated with the objective of providing fundamental material properties data for use in modeling and interpretation of mission data. We systematically evaluate the effects of major element composition, oxygen fugacity (ƒO2), and cooling rate on phase chemistry and magnetic mineralogy, grain size, and intensity of remanent magnetization. The range of experimental compositions and ƒO2 are chosen to bracket the range expected in the Martian crust; our results should therefore span the range of possible mineralogies, textures, and magnetic properties in rapidly cooled Mars crustal materials. Two starting compositions are used for the sample synthesis: (1) an Fe-rich, Al-poor composition patterned after SNC basaltic meteorites and (2) a composition based on thermal emission spectrometer (TES) data with a much lower Fe/Al ratio. The resulting magnetic phase in samples generated at the quartz-fayalitemagnetite (QFM) buffer is a spinel-structured oxide with varying amounts of Cr, Ti, Mg, and Al. Compositional differences depend on bulk composition, cooling rate, differences in crystallization sequence, and the kinetics of silicate mineral nucleation and growth. Oxide abundance and magnetic intensity are most strongly influenced by fO2, with more subtle composition and cooling rate effects. Moderately oxidizing QFM conditions result in an intense magnetization (2.3 × 10-5 Am2 kg-1 to 1.4 × 10-2 Am2 kg-1), especially in the meteorite-derived basalts. However, an increase of magnetic grain size into the multidomain range (meteorite-type) and/or low unblocking temperatures resulting from increased Cr substitution (TES-type) may affect the long-term stability of the remanence in QFM samples

    Behavior of oceanic crustal magnetization at high temperatures: Viscous magnetization and the marine magnetic anomaly source layer

    Get PDF
    Although the source layer for marine magnetic anomalies has been assumed to be the extrusive basalts of uppermost ocean crust, recent studies indicate that lower crustal rocks may also contribute. Because the temperature at which magnetization of crustal rocks achieves long-term stability is crucial to any source layer contribution, we undertook high-temperature VRM (viscous remanent magnetization) experiments on samples of basalt, dike and gabbroic sections. Samples were heated at temperature intervals up to Tc, while a magnetic field was applied for periods between 6 hours and 28 days. Results show that the dike and gabbro samples achieve maximum VRM acquisition near 250°C, well below the Tc of 580°C. The basalt sample shows a peak at 68°C, also well below Tc. Results of this pilot study indicate that the critical isotherm for stable magnetization acquisition is defined by the VRM behavior of the specific crustal section

    Effects of titanomagnetite reordering processes on thermal demagnetization and paleointensity experiments

    Get PDF
    Titanomagnetite (Fe3-xTixO4, 0≀x≀1) is a common, naturally occurring magnetic mineral critical to many paleomagnetic studies. Underlying most interpretations is the assumption that, lacking chemical alteration, Curie temperature (Tc) remains constant. However, recent work has demonstrated that Tc of many natural titanomagnetites varies strongly as a function of thermal history, independent of chemical alteration. This is inferred to arise from reordering of cations and/or vacancies in the crystal structure, and changes occur at temperatures and times relevant to standard paleomagnetic thermal treatments. Because changes take place at Tc, they have the potential to dramatically affect thermal remanence acquisition or demagnetization, impacting interpretation of paleomagnetic results. Here we have modeled the effects of reordering on standard thermal demagnetization and paleointensity experiments. Results suggest that Tc changes during laboratory heating make it impossible to accurately measure the unblocking temperature spectrum without modifying it. Samples with a starting Tc0 less than the closure temperature (Tclose) for the reordering process will develop a high-temperature ‘‘tail’’ that did not exist prior to heating. Samples with a starting Tc0\u3eTclose will have their original Tb spectrum truncated at T ≈ Tclose. Predicted behavior during Thellier-type paleointensity experiments results in only modest deviations in NRM-lost or pTRM*-gained from the nonreordering case. Much larger deviations are predicted for pTRM checks. Compared to paleointensity results from titanomagnetite-bearing pyroclastic deposits, modeled nonideal behavior occurs in the same temperature intervals, but is much more systematic. Reordering is likely one contributing factor to failure of paleointensity experiments

    A Feasibility Study of Microbialites as Paleomagnetic Recorders

    Get PDF
    Microbialites–layered, organosedimentary deposits–exist in the geologic record and extend back in deep time, including all estimated times of inner core nucleation. Microbialites may preserve magnetic field variations at high-resolution based on their estimated growth rates. Previous studies have shown that microbialites can have a stable magnetization. However, the timing and origin of microbialite magnetization were not well determined, and no study has attempted to evaluate whether actively growing microbialites record the geomagnetic field. Here, we present centimeter-scale magnetization and magnetic property variations within the structure of modern microbialites from Great Salt Lake (GSL), United States, and Laguna Bacalar, Mexico, Pleistocene microbialites from GSL, and a Cambrian microbialite from Mongolia. All samples record field directions close to the expected value. The dominant magnetic carrier has a coercivity of 35–50 mT and unblocking temperatures are consistent with magnetite. A small proportion of additional high coercivity minerals such as hematite are also present, but do not appear to appreciably contribute to the natural remanent magnetization (NRM). Magnetization is broadly consistent along microbialite layers, and directional variations correlate with the internal slope of the layers. These observations suggest that the documented NRM may be primarily detrital in origin and that the timing of magnetization acquisition can be close to that of sediment deposition

    Multicomponent cubic oxide exsolution in synthetic basalts: Temperature dependence and implications for magnetic properties

    Get PDF
    Although the compositional unmixing of cubic-structured iron oxides has profound effects on the magnetic properties of rocks that contain them, a basic understanding of the kinetics and thermodynamics of this process has not been achieved in experimental studies due to sluggish reaction rates in binary oxide phases. Exploiting the fact that many natural Fe-oxides contain multiple additional cations, including Ti, Mg and Al, we perform novel “forward” laboratory experiments in which cubic-cubic phase exsolution proceeds from initially homogeneous multicomponent oxides. A variety of Fe-Ti-Mg-Al cubic iron oxides were nucleated and grown in synthetic, multicomponent basalt under different ƒO2 environments, and annealed at temperatures ranging from 590–790°C for up to 88 days. Fine-scale lamellar intergrowths of Fe-Ti-Al-Mg oxides, interpreted to represent cubic phase exsolution, were observed in seven samples, one that was synthesized and annealed at approximately constant ƒO2 (the quartz-fayalite-magnetite, or QFM, buffer) and six that were synthesized at very oxidizing conditions (~QFM + 6 log units) and then annealed at moderately oxidizing (~QFM) conditions. Results demonstrate that the consolute temperature of the multicomponent system is significantly higher than anneal temperatures and Curie temperatures, suggesting that samples that undergo this type of exsolution can carry a total thermal remanent magnetization. Exsolved samples are characterized by a dramatic increase in magnetization and coercivity, and a shift in Curie temperature(s), confirming predictions that this type of exsolution exerts strong control on the strength and stability of magnetization

    Assessing New and Old Methods in Paleomagnetic Paleothermometry: A Test Case at Mt. St. Helens, USA

    Get PDF
    Paleomagnetic data can be used to estimate deposit temperatures (Tdep) of pyroclastic density currents (PDCs) by finding the laboratory temperature at which a PDC-associated thermal remanence is removed. Paleomagnetic paleothermometry assumes that (1) blocking (Tb) and unblocking (Tub) temperatures are equivalent, and (2) the blocking spectrum remains constant through time. The first assumption fails for multidomain (MD) grains, and recent evidence shows that the second is violated in many titanomagnetites, where Tc is a strong function of thermal history. Here we assess the extent to which the standard paleomagnetic method may be biased by a changing Tb spectrum, and we explore a new magnetic technique that instead exploits these changes. Using samples from the 1980 PDCs at Mt. St. Helens, we find that standard methods on oriented lithic clasts provide a Tdep range that overlaps with measured temperatures, but is systematically slightly higher. By contrast, juvenile pumice give Tdep_min estimates that greatly exceed lithic estimates and measured temperatures. We attribute this overestimate to (1) depth-dependent variations in Tc and Tub resulting from thermally activated crystal-chemical reordering and (2) MD titanomagnetite where Tub\u3eTb. Stratigraphic variations in Tc are interpreted in terms of Tdep, giving results mostly consistent with measured temperatures and with the lower end of estimates from lithic clasts. This new method allows us to evaluate temporal and spatial variations in Tdep that would not have been possible using standard paleomagnetic techniques in these lithic-poor deposits. It also provides information on deposits not accessible by surface temperature probes

    Paleointensity estimates from ignimbrites: An evaluation of the Bishop Tuff

    Get PDF
    Ash flow tuffs, or ignimbrites, typically contain fine-grained magnetite, spanning the superparamagnetic to single-domain size range that should be suitable for estimating geomagnetic field intensity. However, ignimbrites may have a remanence of thermal and chemical origin as a result of the complex magnetic mineralogy and variations in the thermal and alteration history. We examined three stratigraphic sections through the ~0.76 Ma Bishop Tuff, where independent information on postemplacement cooling and alteration is available, as a test of the suitability of ignimbrites for paleointensity studies. Thermomagnetic curves suggest that low-Ti titanomagnetite (Tc = 560°C–580°C) is the dominant phase, with a minor contribution from a higher Tc phase(s). Significant remanence unblocking above 580°C suggests that maghemite and/or (titano)maghemite is an important contributor to the remanence in most samples. We obtained successful paleofield estimates from remanence unblocked between 440°C and 580°C for 46 of 89 specimens (15 sites at two of three total localities). These specimens represent a range of degrees of welding and have variable alteration histories and yet provide a consistent paleofield estimate of 43.0 ”T (±3.2), equivalent to a VADM of 7.8 × 1022 Am2. The most densely welded sections of the tuff have emplacement temperatures inferred to be as high as ~660°C, suggesting that the remanence may be primarily thermal in origin, though a contribution from thermochemical remanence cannot be excluded. These results suggest that ignimbrites may constitute a viable material for reliable paleointensity determinations

    Magnetic Mineral Populations in Lower Oceanic Crustal Gabbros (Atlantis Bank, SW Indian Ridge): Implications for Marine Magnetic Anomalies

    Get PDF
    To learn more about magnetic properties of the lower ocean crust and its contributions to marine magnetic anomalies, gabbro samples were collected from International Ocean Discovery Program Hole U1473A at Atlantis Bank on the Southwest Indian Ridge. Detailed magnetic property work links certain magnetic behaviors and domain states to specific magnetic mineral populations. Measurements on whole rocks and mineral separates included magnetic hysteresis, first‐order reversal curves, low‐temperature remanence measurements, thermomagnetic analysis, and magnetic force microscopy. Characteristics of the thermomagnetic data indicate that the upper ~500 m of the hole has undergone hydrothermal alteration. The thermomagnetic and natural remanent magnetization data are consistent with earlier observations from Hole 735B that show remanence arises from low‐Ti magnetite and that natural remanent magnetizations are up to 25 A m−1 in evolved Fe‐Ti oxide gabbros, but are mostly \u3c1 A m−1. Magnetite is present in at least three forms. Primary magnetite is associated with coarse‐grained oxides that are more frequent in the upper part of the hole. This magnetic population is linked to dominantly “pseudo‐single‐domain” behavior that arises from fine‐scale lamellar intergrowths within the large oxides. Deeper in the hole the magnetic signal is more commonly dominated by an interacting single‐domain assemblage most likely found along crystal discontinuities in olivine and/or pyroxene. A third contribution is from noninteracting single‐domain inclusions within plagioclase. Because the concentration of the highly magnetic, oxide‐rich gabbros is greatest toward the surface, the signal from coarse oxides will likely dominate the near‐bottom magnetic anomaly signal at Atlantis Bank

    Magnetic mineral populations in lower oceanic crustal gabbros (Atlantis Bank, SW Indian Ridge): implications for marine magnetic anomalies

    Get PDF
    Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 21(3), (2020): e2019GC008847, doi:10.1029/2019GC008847.To learn more about magnetic properties of the lower ocean crust and its contributions to marine magnetic anomalies, gabbro samples were collected from International Ocean Discovery Program Hole U1473A at Atlantis Bank on the Southwest Indian Ridge. Detailed magnetic property work links certain magnetic behaviors and domain states to specific magnetic mineral populations. Measurements on whole rocks and mineral separates included magnetic hysteresis, first‐order reversal curves, low‐temperature remanence measurements, thermomagnetic analysis, and magnetic force microscopy. Characteristics of the thermomagnetic data indicate that the upper ~500 m of the hole has undergone hydrothermal alteration. The thermomagnetic and natural remanent magnetization data are consistent with earlier observations from Hole 735B that show remanence arises from low‐Ti magnetite and that natural remanent magnetizations are up to 25 A m−1 in evolved Fe‐Ti oxide gabbros, but are mostly <1 A m−1. Magnetite is present in at least three forms. Primary magnetite is associated with coarse‐grained oxides that are more frequent in the upper part of the hole. This magnetic population is linked to dominantly “pseudo‐single‐domain” behavior that arises from fine‐scale lamellar intergrowths within the large oxides. Deeper in the hole the magnetic signal is more commonly dominated by an interacting single‐domain assemblage most likely found along crystal discontinuities in olivine and/or pyroxene. A third contribution is from noninteracting single‐domain inclusions within plagioclase. Because the concentration of the highly magnetic, oxide‐rich gabbros is greatest toward the surface, the signal from coarse oxides will likely dominate the near‐bottom magnetic anomaly signal at Atlantis Bank.This work used samples and data provided by the International Ocean Discovery Program. Funding was provided by the U.S. Science Support Program (J.B.). I.L. has benefited from a Smithsonian Edward and Helen Hintz Secretarial Scholarship. We thank the members of the IODP Expedition 360 Science Party, and the captain and crew of the JOIDES Resolution. Part of this work was done as a Visiting Fellow at the Institute for Rock Magnetism (IRM) at the University of Minnesota. The IRM is made possible through the Instrumentation and Facilities program of the National Science Foundation, Earth Sciences Division, and by funding from the University of Minnesota. We would like to thank IRM staff M. Jackson, P. Solheid, and D. Bilardello for their generous assistance. Many thanks to A. Butula, K. Vernon, and J. Marquardt for their assistance with rock magnetic measurements at UWM and to L. McHenry for assistance with XRD. We also thank two anonymous reviewers for their thoughtful comments that improved the manuscript. Magnetic data associated with this manuscript are available in the Magnetics Information Consortium (MagIC) database at https://www.earthref.org/MagIC/doi/10.1029/2019GC008847. XRD data are available at https://zenodo.org/record/3611642.2020-08-2

    Paleointensity Estimates From Ignimbrites: The Bishop Tuff Revisited

    Get PDF
    Volcanic ash flow tuffs (ignimbrites) may contain single domain‐sized (titano) magnetite that should be good for recording geomagnetic field intensity, but due to their complex thermal histories also contain other magnetic grains, which can complicate and obscure paleointensity determination. An initial study of the suitability of the ~767 ka Bishop Tuff for measuring paleointensity found an internally consistent estimate of 43.0 ± 3.2 ÎŒT. This initial study also showed a spatial heterogeneity in reliable paleointensity estimates that is possibly associated with vapor‐phase alteration and fumarolic activity, which motivated resampling of the Bishop Tuff to examine spatial changes in magnetic properties. Three new stratigraphic sections of the Bishop Tuff within the Owens River gorge were sampled, and the paleointensity results from the initial study in the same locality were reinterpreted. The mean of all sites is 41.9 ± 11.8 ÎŒT; this agrees with the initial study\u27s finding but with substantially greater scatter. Two sections show evidence of vapor‐phase alteration where the presence of titanohematite, likely carrying a thermochemical remanence, produces nonideal behavior. This thermochemical remanence in the upper portion of the section also produces some paleointensity estimates of technically high quality that have significantly higher intensity than the rest of the tuff. Our best estimate for paleointensity, 39.6 ± 9.9 ÎŒT, comes from the densely welded ignimbrite that was emplaced above the Curie temperature of magnetite. The low permeability of this unit likely shielded it from vapor‐phase alteration. Our results suggest that care must be taken in interpreting paleointensity data from large tuffs as nonthermal remanence may be present
    • 

    corecore