21 research outputs found

    Conserved Role of unc-79 in Ethanol Responses in Lightweight Mutant Mice

    Get PDF
    The mechanisms by which ethanol and inhaled anesthetics influence the nervous system are poorly understood. Here we describe the positional cloning and characterization of a new mouse mutation isolated in an N-ethyl-N-nitrosourea (ENU) forward mutagenesis screen for animals with enhanced locomotor activity. This allele, Lightweight (Lwt), disrupts the homolog of the Caenorhabditis elegans (C. elegans) unc-79 gene. While Lwt/Lwt homozygotes are perinatal lethal, Lightweight heterozygotes are dramatically hypersensitive to acute ethanol exposure. Experiments in C. elegans demonstrate a conserved hypersensitivity to ethanol in unc-79 mutants and extend this observation to the related unc-80 mutant and nca-1;nca-2 double mutants. Lightweight heterozygotes also exhibit an altered response to the anesthetic isoflurane, reminiscent of unc-79 invertebrate mutant phenotypes. Consistent with our initial mapping results, Lightweight heterozygotes are mildly hyperactive when exposed to a novel environment and are smaller than wild-type animals. In addition, Lightweight heterozygotes exhibit increased food consumption yet have a leaner body composition. Interestingly, Lightweight heterozygotes voluntarily consume more ethanol than wild-type littermates. The acute hypersensitivity to and increased voluntary consumption of ethanol observed in Lightweight heterozygous mice in combination with the observed hypersensitivity to ethanol in C. elegans unc-79, unc-80, and nca-1;nca-2 double mutants suggests a novel conserved pathway that might influence alcohol-related behaviors in humans

    Enabling Scientific Workkflow Reuse through . . .

    No full text
    Data-centric scientific workflows are often modeled as dataflow process networks. The simplicity of the dataflow framework facilitates workflow design, analysis, and optimization. However, modeling “control-flow intensive” tasks using dataflow constructs often leads to overly complicated workflows that are hard to comprehend, reuse, and maintain. We describe a generic framework, based on scientific workflow templates and frames, for embedding control-flow intensive subtasks within dataflow process networks. This approach can seamlessly handle complex control-flow without sacrificing the benefits of dataflow. We illustrate our approach with a real-world scientific workflow from the astrophysics domain, requiring remote execution and file transfer in a semi-reliable environment. For such workflows, we also describe a 3-layered architecture based on frames and templates where the top-layer consists of an overall dataflow process network, the second layer consists of a tranducer template for modeling the desired control-flow behavior, and the bottom layer consists of frames inside the template that are specialized by embedding the desired component implementation. Our approach can enable scientific workflows that are more robust (faulttolerance strategies can be defined by control-flow driven transducer templates) and at the same time more reusable, since the embedding of frames and templates yields more structured and modular workflow designs
    corecore