493 research outputs found
The accretion of galaxies into groups and clusters
We use the galaxy stellar mass and halo merger tree information from the semi-analyticmodel galaxy catalogue of Font et al. (2008) to examine the accretion of galaxies into a large sample of groups and clusters, covering a wide range in halo mass (1012.9 to 1015.3 h−1 M⊙), and selected from each of four redshift epochs (z=0, 0.5, 1.0 and 1.5). We find that clusters at all examined redshifts have accreted a significant fraction of their final galaxy populations through galaxy groups. A 1014.5 h−1 M⊙ mass cluster at z=0 has, on average, accreted_ 40%
of its galaxies (Mstellar > 109 h−1 M⊙) from halos with masses greater than 1013 h−1 M⊙. Further, the galaxies which are accreted through groups are more massive, on average, than galaxies accreted through smaller halos or from the field population. We find that at a given
epoch, the fraction of galaxies accreted from isolated environments is independent of the final cluster or group mass. In contrast, we find that observing a cluster of the same halo mass at each redshift epoch implies different accretion rates of isolated galaxies, from 5-6 % per Gyr
at z=0 to 15% per Gyr at z=1.5. We find that combining the existence of a Butcher Oemler effect at z=0.5 and the observations that galaxies within groups display significant environmental effects with galaxy accretion histories justifies striking conclusions. Namely, that the
dominant environmental process must begin to occur in halos of 1012 – 1013 h−1 M⊙, and act over timescales of > 2 Gyrs. This argues in favor of a mechanism like “strangulation”, in which the hot halo of a galaxy is stripped upon infalling into a more massive halo . This
simple model predicts that by z=1.5 galaxy groups and clusters will display little to no environmental effects. This conclusion may limit the effectiveness of red sequence cluster finding methods at high redshift
The origin of the α-enhancement of massive galaxies Show affiliations
We study the origin of the stellar α-element-to-iron abundance ratio, [α/Fe]*, of present-day central galaxies, using cosmological, hydrodynamical simulations from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) project. For galaxies with stellar masses of M* > 1010.5 M⊙, [α/Fe]* increases with increasing galaxy stellar mass and age. These trends are in good agreement with observations of early-type galaxies, and are consistent with a ‘downsizing’ galaxy formation scenario: more massive galaxies have formed the bulk of their stars earlier and more rapidly, hence from an interstellar medium that was mostly α-enriched by massive stars. In the absence of feedback from active galactic nuclei (AGNs), however, [α/Fe]* in M* > 1010.5 M⊙ galaxies is roughly constant with stellar mass and decreases with mean stellar age, extending the trends found for lower mass galaxies in both simulations with and without AGN. We conclude that AGN feedback can account for the α-enhancement of massive galaxies, as it suppresses their star formation, quenching more massive galaxies at earlier times, thereby preventing the iron from longer lived intermediate-mass stars (supernova Type Ia) from being incorporated into younger stars
Simulating the Hot X-ray Emitting Gas in Elliptical Galaxies
We study the chemo-dynamical evolution of elliptical galaxies and their hot
X-ray emitting gas using high-resolution cosmological simulations. Our Tree
N-body/SPH code includes a self-consistent treatment of radiative cooling, star
formation, supernovae feedback, and chemical enrichment. We present a series of
LCDM cosmological simulations which trace the spatial and temporal evolution of
heavy element abundance patterns in both the stellar and gas components of
galaxies. X-ray spectra of the hot gas are constructed via the use of the
vmekal plasma model, and analysed using XSPEC with the XMM EPN response
function. Simulation end-products are quantitatively compared with the
observational data in both the X-ray and optical regime. We find that radiative
cooling is important to interpret the observed X-ray luminosity, temperature,
and metallicity of the interstellar medium of elliptical galaxies. However,
this cooled gas also leads to excessive star formation at low redshift, and
therefore results in underlying galactic stellar populations which are too blue
with respect to observations.Comment: 6 pages, 3 figures, to appear in the proceedings of "The IGM/Galaxy
Connection - The Distribution of Baryons at z=0", ed. M. Putman & J.
Rosenberg; High resolution version is available at
http://astronomy.swin.edu.au/staff/dkawata/research/papers.htm
The environmental dependence of H I in galaxies in the EAGLE simulations
We use the EAGLE suite of cosmological hydrodynamical simulations to study how the HI content of present-day galaxies depends on their environment. We show that EAGLE reproduces observed HI mass–environment trends very well, while semi-analytic models typically overpredict the average HI masses in dense environments. The environmental processes act primarily as an on/off switch for the HI content of satellites withM∗ > 109M_. At a fixedM∗, the fraction of HI-depleted satellites increase with increasing host halo mass M200 in response to stronger environmental effects, while at a fixedM200 it decreases with increasing satelliteM∗ as the gas is confined by deeper gravitational potentials. HI-depleted satellites reside mostly, but not exclusively, within the virial radius r200 of their host halo. We investigate the origin of these trends by focusing on three environmental mechanisms: ram pressure stripping by the intragroup medium, tidal stripping by the host halo and satellite–satellite encounters. By tracking back in time the evolution of the HI-depleted satellites, we find that the most common cause of HI removal is satellite encounters. The time-scale for HI removal is typically less than 0.5 Gyr. Tidal stripping occurs in haloes of M200 < 1014M_ within 0.5 × r200, while the other processes act also in more massive haloes, generally within r200. Conversely, we find that ram pressure stripping is the most common mechanism that disturbs the HI morphology of galaxies at redshift z = 0. This implies that HI removal due to satellite–satellite interactions occurs on shorter time-scales than the other processes
All the colours of the rainbow.
Our perception of colour has always been a source of fascination, so it's little wonder that studies of the phenomenon date back hundreds of years. What, though, can modern scientists learn from medieval literature — and how do we go about it
The masses and density profiles of halos in a LCDM galaxy formation simulation
We investigate the internal structure and density profiles of halos of mass in the Evolution and Assembly of Galaxies and their Environment (EAGLE) simulations. These follow the formation of galaxies in a CDM Universe and include a treatment of the baryon physics thought to be relevant. The EAGLE simulations reproduce the observed present-day galaxy stellar mass function, as well as many other properties of the galaxy population as a function of time. We find significant differences between the masses of halos in the EAGLE simulations and in simulations that follow only the dark matter component. Nevertheless, halos are well described by the Navarro-Frenk-White (NFW) density profile at radii larger than ~5% of the virial radius but, closer to the centre, the presence of stars can produce cuspier profiles. Central enhancements in the total mass profile are most important in halos of mass , where the stellar fraction peaks. Over the radial range where they are well resolved, the resulting galaxy rotation curves are in very good agreement with observational data for galaxies with stellar mass . We present an empirical fitting function that describes the total mass profiles and show that its parameters are strongly correlated with halo mass
Colours and luminosities of z=0.1 simulated galaxies in the EAGLE simulations
We calculate the colours and luminosities of redshift z = 0.1 galaxies from the EAGLE simulation suite using the GALAXEV population synthesis models. We take into account obscuration by dust in birth clouds and diffuse ISM using a two-component screen model, following the prescription of Charlot and Fall. We compare models in which the dust optical depth is constant to models where it depends on gas metallicity, gas fraction and orientation. The colours of EAGLE galaxies for the more sophisticated models are in broad agreement with those of observed galaxies. In particular, EAGLE produces a red sequence of passive galaxies and a blue cloud of star forming galaxies, with approximately the correct fraction of galaxies in each population and with g-r colours within 0.1 magnitudes of those observed. Luminosity functions from UV to NIR wavelengths differ from observations at a level comparable to systematic shifts resulting from a choice between Petrosian and Kron photometric apertures. Despite the generally good agreement there are clear discrepancies with observations. The blue cloud of EAGLE galaxies extends to somewhat higher luminosities than in the data, consistent with the modest underestimate of the passive fraction in massive EAGLE galaxies. There is also a moderate excess of bright blue galaxies compared to observations. The overall level of agreement with the observed colour distribution suggests that EAGLE galaxies at z = 0.1 have ages, metallicities and levels of obscuration that are comparable to those of observed galaxies
- …
