23 research outputs found

    Isotopic signatures of methane emissions from tropical fires, agriculture and wetlands: the MOYA and ZWAMPS flights

    Get PDF
    We report methane isotopologue data from aircraft and ground measurements in Africa and South America. Aircraft campaigns sampled strong methane fluxes over tropical papyrus wetlands in the Nile, Congo and Zambezi basins, herbaceous wetlands in Bolivian southern Amazonia, and over fires in African woodland, cropland and savannah grassland. Measured methane δ13CCH4 isotopic signatures were in the range −55 to −49‰ for emissions from equatorial Nile wetlands and agricultural areas, but widely −60 ± 1‰ from Upper Congo and Zambezi wetlands. Very similar δ13CCH4 signatures were measured over the Amazonian wetlands of NE Bolivia (around −59‰) and the overall δ13CCH4 signature from outer tropical wetlands in the southern Upper Congo and Upper Amazon drainage plotted together was −59 ± 2‰. These results were more negative than expected. For African cattle, δ13CCH4 values were around −60 to −50‰. Isotopic ratios in methane emitted by tropical fires depended on the C3 : C4 ratio of the biomass fuel. In smoke from tropical C3 dry forest fires in Senegal, δ13CCH4 values were around −28‰. By contrast, African C4 tropical grass fire δ13CCH4 values were −16 to −12‰. Methane from urban landfills in Zambia and Zimbabwe, which have frequent waste fires, had δ13CCH4 around −37 to −36‰. These new isotopic values help improve isotopic constraints on global methane budget models because atmospheric δ13CCH4 values predicted by global atmospheric models are highly sensitive to the δ13CCH4 isotopic signatures applied to tropical wetland emissions. Field and aircraft campaigns also observed widespread regional smoke pollution over Africa, in both the wet and dry seasons, and large urban pollution plumes. The work highlights the need to understand tropical greenhouse gas emissions in order to meet the goals of the UNFCCC Paris Agreement, and to help reduce air pollution over wide regions of Africa

    Correction: “The 5th edition of The World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms” Leukemia. 2022 Jul;36(7):1720–1748

    Get PDF

    Trace gas flux measurements at the landscape scale using boundary-layer budgets

    No full text
    Methane effluxes from wetland areas of Scotland were estimated by using the boundary-layer budget method by collecting air samples with an aircraft upwind and downwind of an area of extensive peatland. Nocturnal local area methane fluxes were also estimated at a peat bog site, Loch More, located at 58 degrees 24¢ N 03 degrees 36¢ W, using the concentration build up under the nocturnal inversion and from profiles of methane concentration using a tethered balloon. The mean daytime flux for the Loch More case studies in 1993 was found to be 128 ± 57 m mol m-2 h-1 for the NE region of Scotland, comparable to but generally larger than those obtained for the same region one year earlier. The fluxes are smaller than those obtained in Caithness by the same technique. In 1993 the nocturnal fluxes were found to be 38 ± 7 mmol m-2 h-1, significantly smaller than those found during 1992. The daytime fluxes measured by the aircraft were generally larger than fluxes measured by micrometeorological techniques at the same time. These differences can be explained in terms of the significant heterogeneity in surface fluxes that exist on scales of a few hundred metres or less and the possibility of additional sources other than peatland in this region

    Aerosol observations and growth rates in the tropical tropopause layer

    Get PDF
    Abstract. We present a case study of Aitken and accumulation mode aerosol observed downwind of the anvils of deep tropical thunderstorms. The measurements were made by condensation nuclei counters flown on the Egrett high-altitude aircraft from Darwin during the ACTIVE campaign, in monsoon conditions producing widespread convection over land and ocean. Maximum measured concentrations of aerosol in the size range 10–100 nm were 25 000 cm−3 STP. By calculating back-trajectories from the observations, and projecting on to infrared satellite images, the time since the air exited cloud was estimated. In this way a time scale of ~ 3–4 h was derived for the 10–100 nm aerosol concentration to reach its peak. We examine the hypothesis that the growth in aerosol concentrations can be explained by production of sulphuric acid from SO2 followed by particle nucleation and coagulation. Estimates of the sulphuric acid production rate show that the observations are only consistent with this hypothesis if the particles coagulate to sizes &gt; 10 nm much more quickly than is suggested by current theory. Alternatively, other condensible gases (possibly organic) drive the growth of aerosol particles in the TTL. </jats:p
    corecore