11,358 research outputs found
Aerodynamic characteristics determined during development of the Apollo launch escape vehicle configuration
Aerodynamic characteristics determined during development of Apollo launch escape vehicle configuration in wind tunnel test
Teleportation of continuous variable polarisation states
This paper discusses methods for the optical teleportation of continuous
variable polarisation states. We show that using two pairs of entangled beams,
generated using four squeezed beams, perfect teleportation of optical
polarisation states can be performed. Restricting ourselves to 3 squeezed
beams, we demonstrate that polarisation state teleportation can still exceed
the classical limit. The 3-squeezer schemes involve either the use of quantum
non-demolition measurement or biased entanglement generated from a single
squeezed beam. We analyse the efficacies of these schemes in terms of fidelity,
signal transfer coefficients and quantum correlations
Biased EPR entanglement and its application to teleportation
We consider pure continuous variable entanglement with non-equal correlations
between orthogonal quadratures. We introduce a simple protocol which equates
these correlations and in the process transforms the entanglement onto a state
with the minimum allowed number of photons. As an example we show that our
protocol transforms, through unitary local operations, a single squeezed beam
split on a beam splitter into the same entanglement that is produced when two
squeezed beams are mixed orthogonally. We demonstrate that this technique can
in principle facilitate perfect teleportation utilising only one squeezed beam.Comment: 8 pages, 5 figure
Laser cooling and control of excitations in superfluid helium
Superfluidity is an emergent quantum phenomenon which arises due to strong
interactions between elementary excitations in liquid helium. These excitations
have been probed with great success using techniques such as neutron and light
scattering. However measurements to-date have been limited, quite generally, to
average properties of bulk superfluid or the driven response far out of thermal
equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of
superfluid excitations in real-time. Furthermore, strong light-matter
interactions allow both laser cooling and amplification of the thermal motion.
This provides a new tool to understand and control the microscopic behaviour of
superfluids, including phonon-phonon interactions, quantised vortices and
two-dimensional quantum phenomena such as the Berezinskii-Kosterlitz-Thouless
transition. The third sound modes studied here also offer a pathway towards
quantum optomechanics with thin superfluid films, including femtogram effective
masses, high mechanical quality factors, strong phonon-phonon and phonon-vortex
interactions, and self-assembly into complex geometries with sub-nanometre
feature size.Comment: 6 pages, 4 figures. Supplementary information attache
Microphotonic Forces From Superfluid Flow
In cavity optomechanics, radiation pressure and photothermal forces are
widely utilized to cool and control micromechanical motion, with applications
ranging from precision sensing and quantum information to fundamental science.
Here, we realize an alternative approach to optical forcing based on superfluid
flow and evaporation in response to optical heating. We demonstrate optical
forcing of the motion of a cryogenic microtoroidal resonator at a level of 1.46
nN, roughly one order of magnitude larger than the radiation pressure force. We
use this force to feedback cool the motion of a microtoroid mechanical mode to
137 mK. The photoconvective forces demonstrated here provide a new tool for
high bandwidth control of mechanical motion in cryogenic conditions, and have
the potential to allow efficient transfer of electromagnetic energy to motional
kinetic energy.Comment: 5 pages, 6 figure
Entropy and the variational principle for actions of sofic groups
Recently Lewis Bowen introduced a notion of entropy for measure-preserving
actions of a countable sofic group on a standard probability space admitting a
generating partition with finite entropy. By applying an operator algebra
perspective we develop a more general approach to sofic entropy which produces
both measure and topological dynamical invariants, and we establish the
variational principle in this context. In the case of residually finite groups
we use the variational principle to compute the topological entropy of
principal algebraic actions whose defining group ring element is invertible in
the full group C*-algebra.Comment: 44 pages; minor changes; to appear in Invent. Mat
An experimental investigation of criteria for continuous variable entanglement
We generate a pair of entangled beams from the interference of two amplitude
squeezed beams. The entanglement is quantified in terms of EPR-paradox [Reid88]
and inseparability [Duan00] criteria, with observed results of and , respectively. Both results clearly beat the standard quantum
limit of unity. We experimentally analyze the effect of decoherence on each
criterion and demonstrate qualitative differences. We also characterize the
number of required and excess photons present in the entangled beams and
provide contour plots of the efficacy of quantum information protocols in terms
of these variables.Comment: 4 pages, 5 figure
Thermodynamic phase transitions for Pomeau-Manneville maps
We study phase transitions in the thermodynamic description of
Pomeau-Manneville intermittent maps from the point of view of infinite ergodic
theory, which deals with diverging measure dynamical systems. For such systems,
we use a distributional limit theorem to provide both a powerful tool for
calculating thermodynamic potentials as also an understanding of the dynamic
characteristics at each instability phase. In particular, topological pressure
and Renyi entropy are calculated exactly for such systems. Finally, we show the
connection of the distributional limit theorem with non-Gaussian fluctuations
of the algorithmic complexity proposed by Gaspard and Wang [Proc. Natl. Acad.
Sci. USA 85, 4591 (1988)].Comment: 5 page
- …