67 research outputs found

    Interplay between intermittency and dissipation in collisionless plasma turbulence

    Get PDF
    We study the damping of collisionless Alfv\'enic turbulence by two mechanisms: stochastic heating (whose efficiency depends on the local turbulence amplitude δzλ\delta z_\lambda) and linear Landau damping (whose efficiency is independent of δzλ\delta z_\lambda), describing in detail how they affect and are affected by intermittency. The overall efficiency of linear Landau damping is not affected by intermittency in critically balanced turbulence, while stochastic heating is much more efficient in the presence of intermittent turbulence. Moreover, stochastic heating leads to a drop in the scale-dependent kurtosis over a narrow range of scales around the ion gyroscale.Comment: 15 pages, 3 figures, accepted to JP

    The statistical properties of solar wind temperature parameters near 1 AU

    Full text link
    We present a long-duration (∼\sim10 years) statistical analysis of the temperatures, plasma betas, and temperature ratios for the electron, proton, and alpha-particle populations observed by the \emph{Wind} spacecraft near 1 AU. The mean(median) scalar temperatures are Te,totT{\scriptstyle_{e, tot}} == 12.2(11.9) eV, Tp,totT{\scriptstyle_{p, tot}} == 12.7(8.6) eV, and Tα,totT{\scriptstyle_{\alpha, tot}} == 23.9(10.8) eV. The mean(median) total plasma betas are βe,tot\beta{\scriptstyle_{e, tot}} == 2.31(1.09), βp,tot\beta{\scriptstyle_{p, tot}} == 1.79(1.05), and βα,tot\beta{\scriptstyle_{\alpha, tot}} == 0.17(0.05). The mean(median) temperature ratios are (Te/Tp)tot\left(T{\scriptstyle_{e}}/T{\scriptstyle_{p}}\right){\scriptstyle_{tot}} == 1.64(1.27), (Te/Tα)tot\left(T{\scriptstyle_{e}}/T{\scriptstyle_{\alpha}}\right){\scriptstyle_{tot}} == 1.24(0.82), and (Tα/Tp)tot\left(T{\scriptstyle_{\alpha}}/T{\scriptstyle_{p}}\right){\scriptstyle_{tot}} == 2.50(1.94). We also examined these parameters during time intervals that exclude interplanetary (IP) shocks, times within the magnetic obstacles (MOs) of interplanetary coronal mass ejections (ICMEs), and times that exclude MOs. The only times that show significant alterations to any of the parameters examined are those during MOs. In fact, the only parameter that does not show a significant change during MOs is the electron temperature. Although each parameter shows a broad range of values, the vast majority are near the median. We also compute particle-particle collision rates and compare to effective wave-particle collision rates. We find that, for reasonable assumptions of wave amplitude and occurrence rates, the effect of wave-particle interactions on the plasma is equal to or greater than the effect of Coulomb collisions. Thus, wave-particle interactions should not be neglected when modeling the solar wind.Comment: 23 pages, 3 figures, 6 tables, submitted to Astrophys. J. Suppl. on Jan. 30, 201

    Proton and Alpha Driven Instabilities in an Ion Cyclotron Wave Event

    Full text link
    Ion scale wave events or "wave storms" in the solar wind are characterised by enhancements in magnetic field fluctuations as well as coherent magnetic field polarisation signatures at or around the local ion cyclotron frequencies. In this paper we study in detail one such wave event from Parker Solar Probe's (PSP) fourth encounter, consisting of an initial period of left-handed (LH) polarisation abruptly transitioning to a strong period of right-handed (RH) polarisation, accompanied by clear core-beam structure in both the alpha and proton velocity distribution functions. A linear stability analysis shows that the LH polarised waves are anti-Sunward propagating Alfv\'en/ion cyclotron (A/IC) waves primarily driven by a proton cyclotron instability in the proton core population, and the RH polarised waves are anti-Sunward propagating fast magnetosonic/whistler (FM/W) waves driven by a firehose-like instability in the secondary alpha beam population. The abrupt transition from LH to RH is caused by a drop in the proton core temperature anisotropy. We find very good agreement between the frequencies and polarisations of the unstable wave modes as predicted by linear theory and those observed in the magnetic field spectra. Given the ubiquity of ion scale wave signatures observed by PSP, this work gives insight into which exact instabilities may be active and mediating energy transfer in wave-particle interactions in the inner heliosphere, as well as highlighting the role a secondary alpha population may play as a rarely considered source of free energy available for producing wave activity

    The In Situ Signature of Cyclotron Resonant Heating

    Full text link
    The dissipation of magnetized turbulence is an important paradigm for describing heating and energy transfer in astrophysical environments such as the solar corona and wind; however, the specific collisionless processes behind dissipation and heating remain relatively unconstrained by measurements. Remote sensing observations have suggested the presence of strong temperature anisotropy in the solar corona consistent with cyclotron resonant heating. In the solar wind, in situ magnetic field measurements reveal the presence of cyclotron waves, while measured ion velocity distribution functions have hinted at the active presence of cyclotron resonance. Here, we present Parker Solar Probe observations that connect the presence of ion-cyclotron waves directly to signatures of resonant damping in observed proton-velocity distributions. We show that the observed cyclotron wave population coincides with both flattening in the phase space distribution predicted by resonant quasilinear diffusion and steepening in the turbulent spectra at the ion-cyclotron resonant scale. In measured velocity distribution functions where cyclotron resonant flattening is weaker, the distributions are nearly uniformly subject to ion-cyclotron wave damping rather than emission, indicating that the distributions can damp the observed wave population. These results are consistent with active cyclotron heating in the solar wind

    Signaling in Secret: Pay-for-Performance and the Incentive and Sorting Effects of Pay Secrecy

    Get PDF
    Key Findings: Pay secrecy adversely impacts individual task performance because it weakens the perception that an increase in performance will be accompanied by increase in pay; Pay secrecy is associated with a decrease in employee performance and retention in pay-for-performance systems, which measure performance using relative (i.e., peer-ranked) criteria rather than an absolute scale (see Figure 2 on page 5); High performing employees tend to be most sensitive to negative pay-for- performance perceptions; There are many signals embedded within HR policies and practices, which can influence employees’ perception of workplace uncertainty/inequity and impact their performance and turnover intentions; and When pay transparency is impractical, organizations may benefit from introducing partial pay openness to mitigate these effects on employee performance and retention

    The Temperature, Electron, and Pressure Characteristics of Switchbacks: Parker Solar Probe Observations

    Full text link
    Parker Solar Probe (PSP) observes unexpectedly prevalent switchbacks, which are rapid magnetic field reversals that last from seconds to hours, in the inner heliosphere, posing new challenges to understanding their nature, origin, and evolution. In this work, we investigate the thermal states, electron pitch angle distributions, and pressure signatures of both inside and outside switchbacks, separating a switchback into spike, transition region (TR), and quiet period (QP). Based on our analysis, we find that the proton temperature anisotropies in TRs seem to show an intermediate state between spike and QP plasmas. The proton temperatures are more enhanced in spike than in TR and QP, but the alpha temperatures and alpha-to-proton temperature ratios show the opposite trends, implying that the preferential heating mechanisms of protons and alphas are competing in different regions of switchbacks. Moreover, our results suggest that the electron integrated intensities are almost the same across the switchbacks but the electron pitch angle distributions are more isotropic inside than outside switchbacks, implying switchbacks are intact structures but strong scattering of electrons happens inside switchbacks. In addition, the examination of pressures reveals that the total pressures are comparable through a switchback, confirming switchbacks are pressure-balanced structures. These characteristics could further our understanding of ion heating, electron scattering, and the structure of switchbacks.Comment: submitted to Ap
    • …
    corecore