405 research outputs found

    General Relativistic Gas Dynamics in the Central Cavity of Binary Black Holes

    Get PDF
    Supermassive binary black holes (SMBBHs) represent an excellent candidate for future combined gravitational wave and electromagnetic astrophysics, commonly referred to as multimessenger astrophysics. While much is known about the gravitational wave signal of merging BBHs, little is known about the electromagnetic emission. Modeling the electromagnetic emission coincident with gravitational waves requires simulations of SMBBHs coupled to their astrophysical environment, particularly during the late stages of inspiral and merger. These simulations necessitate a broad range of physics including general relativity, magnetohydrodynamics, and radiation physics. In this Dissertation we present simulations of SMBBHs coupled to their astrophysical environment. We explore, for the first time, the gas dynamics in a relativistic binary black hole (BBH) system in which an accretion disk (a mini-disk ) orbits each black hole. In addition to studying the structure and dynamics of the mini-disks, we present spectra from ray-tracing calculations of SMBBH accretion including mini-disks. Due to the immense computational burden of these simulations (millions of CPU hours per binary orbit), we restrict our study to equal-mass, non-spinning SMBBHs. Relativistic effects alter the dynamics of gas in this environment in several ways. Because the gravitational potential between the two black holes becomes shallower than in the Newtonian regime, the mini-disks stretch toward the L1 point and the amount of gas passing back and forth between the mini-disks increases sharply with decreasing binary separation. This \enquote{sloshing} is quasi-periodically modulated at 2 and 2.75 times the binary orbital frequency, corresponding to timescales of hours to days for SMBBHs. In addition, relativistic effects add an azimuthal m = 1 component to the tidally driven spiral waves in the disks that are purely m = 2 in Newtonian gravity; this component becomes dominant when the separation islatter. This modulation in the accretion stream flux has a quasi-periodic nature of 0.74 times the binary orbital frequency. Both the sloshing and the spiral waves have the potential to create distinctive radiation features that may uniquely mark SMBBHs in the relativistic regime. Finally, we observe a broadened thermal spectrum due to the combined photospheres of the mini-disks and circumbinary disks in the range of approximately 1 - 1000eV, and an inverse Compton spectrum at tens to hundreds of keV dominated by the mini-disks

    Tema Con Variazioni: Quantum Channel Capacity

    Full text link
    Channel capacity describes the size of the nearly ideal channels, which can be obtained from many uses of a given channel, using an optimal error correcting code. In this paper we collect and compare minor and major variations in the mathematically precise statements of this idea which have been put forward in the literature. We show that all the variations considered lead to equivalent capacity definitions. In particular, it makes no difference whether one requires mean or maximal errors to go to zero, and it makes no difference whether errors are required to vanish for any sequence of block sizes compatible with the rate, or only for one infinite sequence.Comment: 32 pages, uses iopart.cl

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    • …
    corecore