213 research outputs found

    A survey of inlet/engine distortion compatibility

    Get PDF
    The history of distortion analysis is traced back to its origin in parallel compressor theory which was initially proposed in the late fifties. The development of this theory is reviewed up to its inclusion in the complex computer codes of today. It is found to be a very useful tool to guide development but not quantitative enough to predict compatibility. Dynamic or instantaneous distortion methodology is also reviewed from its origins in the sixties, to its current application in the eighties. Many of the requirements for interpreting instantaneous distortion are considered and illustrated. Statistical methods for predicting the peak distortion are described, and their limitations and advantages discussed. Finally, some Reynolds number and scaling considerations for inlet testing are considered. It is concluded that the deterministic instantaneous distortion methodology combined with distortion testing of engines with screens will remain the primary method of predicting compatibility for the near future. However, parallel compressor analysis and statistical peak distortion prediction will be important tools employed during the development of inlet/engine compatibility

    Searching for Hyperbolicity

    Full text link
    This is an expository paper, based on by a talk given at the AWM Research Symposium 2017. It is intended as a gentle introduction to geometric group theory with a focus on the notion of hyperbolicity, a theme that has inspired the field from its inception to current-day research

    Quantum error-correcting codes and 4-dimensional arithmetic hyperbolic manifolds

    Get PDF
    Using 4-dimensional arithmetic hyperbolic manifolds, we construct some new homological quantum error correcting codes. They are LDPC codes with linear rate and distance nϵn^\epsilon. Their rate is evaluated via Euler characteristic arguments and their distance using Z2\mathbb{Z}_2-systolic geometry. This construction answers a queston of Z\'emor, who asked whether homological codes with such parameters could exist at all.Comment: 21 page

    Dirichlet fundamental domains and complex-projective varieties

    Get PDF
    We prove that for every finitely-presented group G there exists a 2-dimensional irreducible complex-projective variety W with the fundamental group G, so that all singularities of W are normal crossings and Whitney umbrellas.Comment: 1 figur

    Newsprint coverage of smoking in cars carrying children : a case study of public and scientific opinion driving the policy debate

    Get PDF
    Acknowledgements Date of Acceptance:17/10/2014 Acknowledgements: This project was funded by Cancer Research UK (MC_U130085862) and the Scottish School of Public Health Research. Cancer Research UK and the Scottish School of Public Health Research was not involved in the collection, analysis, and interpretation of data, writing of the manuscript or the decision to submit the manuscript for publication. Shona Hilton, Karen Wood, Josh Bain and Chris Patterson are funded by the UK Medical Research Council as part of the Understandings and Uses of Public Health Research programme (MC_UU_12017/6) at the MRC/CSO Social and Public Health Sciences Unit, University of Glasgow. We thank Alan Pollock who provided assistance with coding.Peer reviewedPublisher PD

    The longitude problem from the 1700s to today: An international and general education physics course

    Get PDF
    For instructors wishing to use physics as part of an international or general education course, the framework for a course based on the “longitude problem” from the 1700s is described. The longitude problem is teeming with basic principles of physics and astronomy, which makes it ideal for a non-science-major-based college-level course. This paper summarizes the longitude problem in the context of conceptual physics and astronomy and outlines an appropriate curriculum. Specifics on teaching such a course in London, as part of an international studies program, are discussed

    Systematic mechanical assessment of consolidants for canvas reinforcement under controlled environment

    Get PDF
    In conservation, adhesives are commonly used for the consolidation of canvases, yet their impact upon the canvas longevity has raised some concerns amongst conservators. As such, this study presents a testing protocol developed to assess the performance of commonly-used adhesives (natural animal glue and synthetic Beva® 371) and a newly developed nanocellulose consolidant, nanofibrillated nanocellulose (CNF). This includes their effect on the visual appearance, consolidation, and response of the mechanical properties of the treated canvases to programmed changes in relative humidity (RH). Scanning electron microscopy (SEM) images of animal glue- and Beva® 371-treated canvases revealed the presence of adhesive and consolidant on and in-between cotton fibres. The consolidants form bridges linking and connecting the cotton fibres and holding them together, whereas the CNF treatment, formed a visible continuous and dense surface coating. None of the treatments induced any discernible colour change. Controlled environment mechanical testing was performed in two ways: by applying a linearly increasing static force at fixed RH (Young’s modulus) and by applying a dynamic force together with a programmed RH cycling between 20 and 80% (RH dependent viscoelastic properties). CNF gave a higher value of Young’s modulus than either of the two commonly-used materials. Measurements at different values of RH (20 and 80%) demonstrated for all the treated canvases that at the lower value (RH 20%) Young’s modulus values were higher than at the higher value (RH 80%). Besides, the dynamic mode showed that the rate of response in all cases was rapid and reversible and that the nanofibrillated cellulose treated sample showed the highest variation in storage (or elastic) modulus measured at the end of RH plateaux (20 and 80% RH). Thus CNF appears to be a promising material given its higher mechanical performance. The protocol developed in this study has enabled us to examine and compare candidate materials for the consolidation of canvases systematically, using testing parameters that remained relevant to the field of canvas conservation

    Integrin α5β1 Function Is Regulated by XGIPC/kermit2 Mediated Endocytosis during Xenopus laevis Gastrulation

    Get PDF
    During Xenopus gastrulation α5β1 integrin function is modulated in a temporally and spatially restricted manner, however, the regulatory mechanisms behind this regulation remain uncharacterized. Here we report that XGIPC/kermit2 binds to the cytoplasmic domain of the α5 subunit and regulates the activity of α5β1 integrin. The interaction of kermit2 with α5β1 is essential for fibronectin (FN) matrix assembly during the early stages of gastrulation. We further demonstrate that kermit2 regulates α5β1 integrin endocytosis downstream of activin signaling. Inhibition of kermit2 function impairs cell migration but not adhesion to FN substrates indicating that integrin recycling is essential for mesoderm cell migration. Furthermore, we find that the α5β1 integrin is colocalized with kermit2 and Rab 21 in embryonic and XTC cells. These data support a model where region specific mesoderm induction acts through kermit2 to regulate the temporally and spatially restricted changes in adhesive properties of the α5β1 integrin through receptor endocytosis
    corecore