170 research outputs found
Wear of Fluorapatite Single Crystals : II. Frictional Behavior
The frictional behavior of natural fluorapatite single crystals under sliding was evaluated. Strain rate did not influence the coefficient of friction. Low and high regimes of friction were related to the amount of penetration; higher values of friction were associated with deeper penetration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67389/2/10.1177_00220345720510026001.pd
Energy and force analysis of Ti-6Al-4V linear friction welds for computational modeling input and validation data
The linear friction welding (LFW) process is finding increasing use as a manufacturing technology for the production of titanium alloy Ti-6Al-4V aerospace components. Computational models give an insight into the process, however, there is limited experimental data that can be used for either modeling inputs or validation. To address this problem, a design of experiments approach was used to investigate the influence of the LFW process inputs on various outputs for experimental Ti-6Al-4V welds. The finite element analysis software DEFORM was also used in conjunction with the experimental findings to investigate the heating of the workpieces. Key findings showed that the average interface force and coefficient of friction during each phase of the process were insensitive to the rubbing velocity; the coefficient of friction was not coulombic and varied between 0.3 and 1.3 depending on the process conditions; and the interface of the workpieces reached a temperature of approximately approximately 1273 K (1000 °C) at the end of phase 1. This work has enabled a greater insight into the underlying process physics and will aid future modeling investigations.EPSRC, Boeing Company, Welding Institut
Nanofriction mechanisms derived from the dependence of friction on load and sliding velocity from air to UHV on hydrophilic silicon
This paper examines friction as a function of the sliding velocity and
applied normal load from air to UHV in a scanning force microscope (SFM)
experiment in which a sharp silicon tip slides against a flat Si(100) sample.
Under ambient conditions, both surfaces are covered by a native oxide, which is
hydrophilic. During pump-down in the vacuum chamber housing the SFM, the
behavior of friction as a function of the applied normal load and the sliding
velocity undergoes a change. By analyzing these changes it is possible to
identify three distinct friction regimes with corresponding contact properties:
(a) friction dominated by the additional normal forces induced by capillarity
due to the presence of thick water films, (b) higher drag force from ordering
effects present in thin water layers and (c) low friction due to direct
solid-solid contact for the sample with the counterbody. Depending on
environmental conditions and the applied normal load, all three mechanisms may
be present at one time. Their individual contributions can be identified by
investigating the dependence of friction on the applied normal load as well as
on the sliding velocity in different pressure regimes, thus providing
information about nanoscale friction mechanisms
Sliding blocks with random friction and absorbing random walks
With the purpose of explaining recent experimental findings, we study the
distribution of distances traversed by a block that
slides on an inclined plane and stops due to friction. A simple model in which
the friction coefficient is a random function of position is considered.
The problem of finding is equivalent to a First-Passage-Time
problem for a one-dimensional random walk with nonzero drift, whose exact
solution is well-known. From the exact solution of this problem we conclude
that: a) for inclination angles less than \theta_c=\tan(\av{\mu})
the average traversed distance \av{\lambda} is finite, and diverges when
as \av{\lambda} \sim (\theta_c-\theta)^{-1}; b) at
the critical angle a power-law distribution of slidings is obtained:
. Our analytical results are confirmed by
numerical simulation, and are in partial agreement with the reported
experimental results. We discuss the possible reasons for the remaining
discrepancies.Comment: 8 pages, 8 figures, submitted to Phys. Rev.
Dissipation of vibration in rough contact
The relationship which links the normal vibration occurring during the sliding of rough surfaces and the nominal contact area is investigated. Two regimes are found. In the first one, the vibrational level does not depend on the contact area, while in the second one, it is propor- tional to the contact area. A theoretical model is proposed. It is based on the assumption that the vibrational level results from a competition between two processes of vibration damping, the internal damping of the material and the contact damping occurring at the interface
Simulations of the Static Friction Due to Adsorbed Molecules
The static friction between crystalline surfaces separated by a molecularly
thin layer of adsorbed molecules is calculated using molecular dynamics
simulations. These molecules naturally lead to a finite static friction that is
consistent with macroscopic friction laws. Crystalline alignment, sliding
direction, and the number of adsorbed molecules are not controlled in most
experiments and are shown to have little effect on the friction. Temperature,
molecular geometry and interaction potentials can have larger effects on
friction. The observed trends in friction can be understood in terms of a
simple hard sphere model.Comment: 13 pages, 13 figure
Gene-educational attainment interactions in a multi-population genome-wide meta-analysis identify novel lipid loci
Introduction: Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes.Methods: A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant (p < 5 x 10(-8)) and suggestive (p < 1 x 10(-6)) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals).Results: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290, LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue.Discussion: Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.Pathophysiology, epidemiology and therapy of agein
- …