587 research outputs found

    Inappropriateness in laboratory medicine: An elephant in the room?

    Get PDF
    Appropriateness of diagnostic testing can be conventionally described as prescription of the right test, using the right method, at the right time, to the right patient, with the right costs and for producing the right outcome. There is ongoing debate about the real burden of inappropriateness in laboratory diagnostics. The media coverage of this issue has also recently led to either over- or under-emphasizing the clinical, organizational and economic consequences. This is quite problematic, inasmuch as some reliable data are available in the current scientific literature, showing that inappropriateness of laboratory testing can be as high as 70%. This is especially evident for, though not limited to, cancer biomarkers testing, in which the practice of avoidable tests ordering is dramatically magnified. The reasons beyond inappropriateness are many and multifaceted, entailing wrong habits, resistance to changes, poor culture, insufficient education and healthcare inefficiencies. There are many unfavorable consequences attributable to avoidable testing, including unjustified incremental costs, derangement of laboratory efficiency and potential patient safety issues. The tentative solutions to this important problem necessitate that policymakers, local hospital administrators, laboratory professionals, clinicians, patients' associations and diagnostic companies join the efforts and embark in the same landmark effort for disseminating a better culture of appropriateness

    Bio-based building components: A newly sustainable solution for traditional walls made of Arundo donax and gypsum

    Get PDF
    To contribute to the use of bio-based materials in the building sector, a novel bio-based wall panel, with a high thermal performance level, is proposed in this work. The panel is based on an ancient rural technique, widely diffused in southern Italy, which makes use of Arundo donax L. canes combined with gypsum plaster to build walls and ceilings of rural buildings. The enhancement of the thermal capacity of these panels by means of the introduction in the canes of a natural wax oleogel (WO) is proposed in this paper. A specific experimental campaign aiming at the comparison of traditional and innovative panels was carried out to assess the enhanced thermal performance of the proposed solution. The maximum value of heat flow absorbed from the panel with WO was 61.08 W/m(2) around a mean panel temperature of 24 & DEG;C, corresponding to the melting temperature range of the WO. The panel without WO at the same temperature absorbed an incoming heat flow of 34.64 W/m(2) which is about 57% of the panel with WO. The panel with WO released at a temperature of about 27.5 & DEG;C, a heat flow of 43.42 W/m(2). At the same temperature of about 27.5 & DEG;C, the panel without WO released a heat flow of 34.38 W/m(2) which is about 80% that of the panel with WO. The results highlighted that the addition of natural WO has enhanced the thermal capacity of the panel facilitating heat dissipation through the borders. These characteristics make the panel a suitable component for internal partitions of controlled temperature zones such as residential rooms, storage food areas, livestock buildings, and where it is necessary to obtain a constant environmental temperature. In particular, the null or low toxicity of the panel's materials allows for partition use, also in hygienically safe environments

    Current laboratory diagnostics of coronavirus disease 2019 (COVID-19)

    Get PDF
    Laboratory medicine provides an almost irreplaceable contribution to the diagnostic reasoning and managed care of most human pathologies. The novel coronavirus disease 2019 (COVID-19) is not an exception to this paradigm. Although the relatively recent emergence does not allow to draw definitive conclusions on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics, some standpoints can be conveyed. First and foremost, it seems now clear that we will be living together with this virus for quite a long time, so that our vigilance and responsiveness against the emergence of new local outbreaks shall be maintained at the highest possible levels. The etiological diagnosis of COVID-19 is, and will remain for the foreseeable future, deeply based on direct identification of viral RNA by means of molecular biology techniques in biological materials, especially upper and lower respiratory tract specimens. Whether other materials, such as blood, urine, stools, saliva and throat washing, will become valid alternatives has not been unequivocally defined so far. As concerns serological testing, promising information can be garnered from preliminary investigations, showing that the vast majority of COVID-19 patients seem to develop a sustained immune response against the virus, characterized especially by emergence of anti-SARS-CoV-2 IgG and IgA, 1 to 2 weeks after the onset of fever and/or respiratory symptoms. Whether these antibodies will have persistent neutralizing activity against the virus is still to be elucidated on individual and general basis. The availability of rapid tests for detecting either viral antigens or anti-SARS-CoV-2 antibodies are a potentially viable opportunity for purposes of epidemiologic surveillance, though more information is needed on accuracy and reliability of these portable immunoassays

    Water-energy-ecosystem nexus in small run-of-river hydropower : Optimal design and policy

    Get PDF
    Acknowledgment This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Support from the Helmholtz Centre for Environmental Research - UFZ is gratefully acknowledged.Peer reviewedPublisher PD

    Investigation of ABO Gene Variants across More Than 60 Pig Breeds and Populations and Other Suidae Species Using Whole-Genome Sequencing Datasets

    Get PDF
    Polymorphisms in the human ABO gene determine the major blood classification system based on the three well-known forms: A; B; and O. In pigs that carry only two main alleles in this gene (A and O), we still need to obtain a more comprehensive distribution of variants, which could also impact its function. In this study, we mined more than 500 whole-genome sequencing datasets to obtain information on the ABO gene in different Suidae species, pig breeds, and populations and provide (i) a comprehensive distribution of the A and O alleles, (ii) evolutionary relationships of ABO gene sequences across Suidae species, and (iii) an exploratory evaluation of the effect of the different ABO gene variants on production traits and blood-related parameters in Italian Large White pigs. We confirmed that allele O is likely under balancing selection, present in all Sus species investigated, without being fixed in any of them. We reported a novel structural variant in perfect linkage disequilibrium with allele O that made it possible to estimate the evolutionary time window of occurrence of this functional allele. We also identified two single nucleotide polymorphisms that were suggestively associated with plasma magnesium levels in pigs. Other studies can also be constructed over our results to further evaluate the effect of this gene on economically relevant traits and basic biological functions

    Mining livestock genome datasets for an unconventional characterization of animal DNA viromes

    Get PDF
    Whole genome sequencing (WGS) datasets, usually generated for the investigation of the individual animal genome, can be used for additional mining of the fraction of sequencing reads that remains unmapped to the respective reference genome. A significant proportion of these reads contains viral DNA derived from viruses that infected the sequenced animals. In this study, we mined more than 480 billion sequencing reads derived from 1471 WGS datasets produced from cattle, pigs, chickens and rabbits. We identified 367 different viruses among which 14, 11, 12 and 1 might specifically infect the cattle, pig, chicken and rabbit, respectively. Some of them are ubiquitous, avirulent, highly or potentially damaging for both livestock and humans. Retrieved viral DNA information provided a first unconventional and opportunistic landscape of the livestock viromes that could be useful to understand the distribution of some viruses with potential deleterious impacts on the animal food production systems

    Pathogenicity of viral nervous necrosis virus for Guppy fish, Poecilia reticulata

    Get PDF
    The pathogenicity of a Nervous Necrosis Virus isolate obtained from naturally infected Golden grey mullet (Liza auratus) suffering serious mortalities in Iranian coastline water of the Caspian Sea was investigated for first time. An experimental infection has been performed using three groups, two experimental groups and one control group of Guppy (Poecilia reticulata) with mean weight 0.47±0.09 g, at temperature 25ÂșC. The infectious dosage (50 ml) with TCID50/ml= 10^4.25 for 2 hours in group 1 and 4 hours in group 2 developed the disease with immersion method. Clear clinical signs associated with significant mortality were observed since 15 dpi. Cumulative mortalities rose to 100% at 30 dpi. While in the control group no mortality was recorded. Virus was re-isolated on SSN-1 cell line that showing typical CPE developed after inoculation with tissues filtrate from dead fish. Histopathological examination of exposed fish, showed clear vacuolization in the granular layer of the retina and cerebellum. TEM micrographs revealed intracytoplasmic vacuoles in the retina of infected Guppy. IHC revealed the presence of viral antigens in the brain and retina. These results confirmed the pathogenicity of the NNV isolate obtained from Golden grey mullet suffering high mortality with regard to suggest that the same agent isolated from golden grey mullet is very likely the cause of the mortality observed in the same species

    Genome-wide association studies for 30 haematological and blood clinical-biochemical traits in Large White pigs reveal genomic regions affecting intermediate phenotypes

    Get PDF
    Haematological and clinical-biochemical parameters are considered indicators of the physiological/health status of animals and might serve as intermediate phenotypes to link physiological aspects to production and disease resistance traits. The dissection of the genetic variability affecting these phenotypes might be useful to describe the resilience of the animals and to support the usefulness of the pig as animal model. Here, we analysed 15 haematological and 15 clinical-biochemical traits in 843 Italian Large White pigs, via three genome-wide association scan approaches (single-trait, multi-trait and Bayesian). We identified 52 quantitative trait loci (QTLs) associated with 29 out of 30 analysed blood parameters, with the most significant QTL identified on porcine chromosome 14 for basophil count. Some QTL regions harbour genes that may be the obvious candidates: QTLs for cholesterol parameters identified genes (ADCY8, APOB, ATG5, CDKAL1, PCSK5, PRL and SOX6) that are directly involved in cholesterol metabolism; other QTLs highlighted genes encoding the enzymes being measured [ALT (known also as GPT) and AST (known also as GOT)]. Moreover, the multivariate approach strengthened the association results for several candidate genes. The obtained results can contribute to define new measurable phenotypes that could be applied in breeding programs as proxies for more complex traits
    • 

    corecore