26 research outputs found
Microhabitat competition between Iberian fish species and the endangered JĂșcar nase (Parachondrostoma arrigonis; Steindachner, 1866)
"This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Ecohydraulics on 24-01-2017, available online: https://www.tandfonline.com/doi/full/10.1080/24705357.2016.1276417"[EN] Competition with invasive species is recognized as having a major impact on biodiversity conservation. The upper part of the Cabriel River (Eastern Iberian Peninsula) harbours the most important population of the JĂșcar nase (Parachondrostoma arrigonis; Steindachner, 1866), a fish species in imminent danger of extinction. Currently, this species cohabits with several non-native species, such as the Iberian nase (Pseudochondrostoma polylepis; Steindachner, 1864) and the bermejuela (Achondrostoma arcasii; Steindachner, 1866). The potential habitat competition with these species was studied by analysing the spatial and temporal overlapping of suitable microhabitats. Generalized Additive Mixed Models (GAMMs) were developed to model microhabitat selection and these GAMMs were used to assess the habitat suitability (i.e. probability of presence) under several flows simulated with River2D. The JĂșcar nase will compete, spatially and temporally, for the few suitable microhabitats with bermejuela and, to a lesser extent, with small Iberian nase; conversely, large Iberian nase was of minor concern, due to increased differences in habitat preferences. This study represents an important assessment of potential competition and, therefore, these results might assist to better define future management practices in the upper part of the Cabriel River.This study was funded by the Spanish Ministry of Economy and Competitiveness through the SCARCE project (Consolider Ingenio 2010 CSD2009 00065); the Universitat PolitĂšcnica de ValĂšncia, through the project UPPTE/2012/294 [PAID 06 12]; it was also partially funded by the IMPADAPT project (CGL2013-48424-C2-1-R) with Spanish MINECO (Ministerio de EconomĂa y Competitividad) and FEDER funds.
The authors would like to thank the help of the Conselleria de Territori i Vivenda (Generalitat Valenciana) and the ConfederaciĂłn HidrogrĂĄfica del JĂșcar (Spanish government), which provided environmental data to Alfredo Ollero, and the two anonymous reviewers who first suggested the submission of the paper to a regular journal. Finally, we would like to thank TECNOMA S.A. for the development of the hydraulic model.Muñoz Mas, R.; Soares Costa, RM.; Alcaraz-HernĂĄndez, JD.; Martinez-Capel, F. (2017). Microhabitat competition between Iberian fish species and the endangered JĂșcar nase (Parachondrostoma arrigonis; Steindachner, 1866). Journal of Ecohydraulics. 2(1):3-15. https://doi.org/10.1080/24705357.2016.1276417S31521Alcaraz, C., Carmona-Catot, G., Risueño, P., Perea, S., PĂ©rez, C., Doadrio, I., & Aparicio, E. (2014). Assessing population status of Parachondrostoma arrigonis (Steindachner, 1866), threats and conservation perspectives. Environmental Biology of Fishes, 98(1), 443-455. doi:10.1007/s10641-014-0274-3ALMEIDA, D., & GROSSMAN, G. D. (2012). Utility of direct observational methods for assessing competitive interactions between non-native and native freshwater fishes. Fisheries Management and Ecology, 19(2), 157-166. doi:10.1111/j.1365-2400.2012.00847.xAlmeida, D., Merino-Aguirre, R., Vilizzi, L., & Copp, G. H. (2014). Interspecific Aggressive Behaviour of Invasive Pumpkinseed Lepomis gibbosus in Iberian Fresh Waters. PLoS ONE, 9(2), e88038. doi:10.1371/journal.pone.0088038Anderson, D. R., Burnham, K. P., & Thompson, W. L. (2000). Null Hypothesis Testing: Problems, Prevalence, and an Alternative. The Journal of Wildlife Management, 64(4), 912. doi:10.2307/3803199Aparicio, E., Vargas, M. J., Olmo, J. M., & de Sostoa, A. (2000). Environmental Biology of Fishes, 59(1), 11-19. doi:10.1023/a:1007618517557Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4(0), 40-79. doi:10.1214/09-ss054Austin, M. (2007). Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling, 200(1-2), 1-19. doi:10.1016/j.ecolmodel.2006.07.005Baltz, D. M., Vondracek, B., Brown, L. R., & Moyle, P. B. (1991). Seasonal Changes in Microhabitat Selection by Rainbow Trout in a Small Stream. Transactions of the American Fisheries Society, 120(2), 166-176. doi:10.1577/1548-8659(1991)1202.3.co;2Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution, 3(2), 327-338. doi:10.1111/j.2041-210x.2011.00172.xBeakes, M. P., Moore, J. W., Retford, N., Brown, R., Merz, J. E., & Sogard, S. M. (2012). EVALUATING STATISTICAL APPROACHES TO QUANTIFYING JUVENILE CHINOOK SALMON HABITAT IN A REGULATED CALIFORNIA RIVER. River Research and Applications, 30(2), 180-191. doi:10.1002/rra.2632BROOK, B., SODHI, N., & BRADSHAW, C. (2008). Synergies among extinction drivers under global change. Trends in Ecology & Evolution, 23(8), 453-460. doi:10.1016/j.tree.2008.03.011Brosse, S., Laffaille, P., Gabas, S., & Lek, S. (2001). Is scuba sampling a relevant method to study fish microhabitat in lakes? Examples and comparisons for three European species. Ecology of Freshwater Fish, 10(3), 138-146. doi:10.1034/j.1600-0633.2001.100303.xCLAVERO, M. (2011). Assessing the risk of freshwater fish introductions into the Iberian Peninsula. Freshwater Biology, 56(10), 2145-2155. doi:10.1111/j.1365-2427.2011.02642.xCollares-Pereira, M. J., & Coelho, M. M. (1983). Biometrical analysis of Chondrostoma polylepis x Rutilus arcasi natural hybrids (Osteichthyes-Cypriniformes-Cyprinidae). Journal of Fish Biology, 23(5), 495-509. doi:10.1111/j.1095-8649.1983.tb02930.xCosta, R. M. S., MartĂnez-Capel, F., Muñoz-Mas, R., Alcaraz-HernĂĄndez, J. D., & GarĂłfano-GĂłmez, V. (2011). HABITAT SUITABILITY MODELLING AT MESOHABITAT SCALE AND EFFECTS OF DAM OPERATION ON THE ENDANGERED JĂșCAR NASE, PARACHONDROSTOMA ARRIGONIS (RIVER CABRIEL, SPAIN). River Research and Applications, 28(6), 740-752. doi:10.1002/rra.1598Dal Pozzolo A, Caelen O, Bontempi G. 2015. unbalanced: Racing for unbalanced methods selection. R package version 2.0.Elith, J., & Leathwick, J. R. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 40(1), 677-697. doi:10.1146/annurev.ecolsys.110308.120159Elvira, B., & Almodovar, A. (2001). Freshwater fish introductions in Spain: facts and figures at the beginning of the 21st century. Journal of Fish Biology, 59(sa), 323-331. doi:10.1111/j.1095-8649.2001.tb01393.xElvira, B., & AlmodĂłvar, A. (2006). Threatened fishes of the world: Chondrostoma arrigonis (Steindachner, 1866) (Cyprinidae). Environmental Biology of Fishes, 81(1), 27-28. doi:10.1007/s10641-006-9172-7Friedman, J. H. (2001). machine. The Annals of Statistics, 29(5), 1189-1232. doi:10.1214/aos/1013203451Fukuda, S., De Baets, B., Waegeman, W., Verwaeren, J., & Mouton, A. M. (2013). Habitat prediction and knowledge extraction for spawning European grayling (Thymallus thymallus L.) using a broad range of species distribution models. Environmental Modelling & Software, 47, 1-6. doi:10.1016/j.envsoft.2013.04.005Girard, V., Monti, D., Valade, P., Lamouroux, N., Mallet, J.-P., & Grondin, H. (2013). HYDRAULIC PREFERENCES OF SHRIMPS AND FISHES IN TROPICAL INSULAR RIVERS. River Research and Applications, 30(6), 766-779. doi:10.1002/rra.2675Gozlan, R. E., Britton, J. R., Cowx, I., & Copp, G. H. (2010). Current knowledge on non-native freshwater fish introductions. Journal of Fish Biology, 76(4), 751-786. doi:10.1111/j.1095-8649.2010.02566.xGuay, J. C., Boisclair, D., Rioux, D., Leclerc, M., Lapointe, M., & Legendre, P. (2000). Development and validation of numerical habitat models for juveniles of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 57(10), 2065-2075. doi:10.1139/f00-162Guisan, A., Graham, C. H., Elith, J., & Huettmann, F. (2007). Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 13(3), 332-340. doi:10.1111/j.1472-4642.2007.00342.xHeggenes, J., Brabrand, Ă
g., & Saltveit, S. (1990). Comparison of Three Methods for Studies of Stream Habitat Use by Young Brown Trout and Atlantic Salmon. Transactions of the American Fisheries Society, 119(1), 101-111. doi:10.1577/1548-8659(1990)1192.3.co;2Jowett, I. G., & Davey, A. J. H. (2007). A Comparison of Composite Habitat Suitability Indices and Generalized Additive Models of Invertebrate Abundance and Fish PresenceâHabitat Availability. Transactions of the American Fisheries Society, 136(2), 428-444. doi:10.1577/t06-104.1Jowett, I. G., & Duncan, M. J. (2012). Effectiveness of 1D and 2D hydraulic models for instream habitat analysis in a braided river. Ecological Engineering, 48, 92-100. doi:10.1016/j.ecoleng.2011.06.036Laurikkala, J. (2001). Improving Identification of Difficult Small Classes by Balancing Class Distribution. Lecture Notes in Computer Science, 63-66. doi:10.1007/3-540-48229-6_9Leunda, P. (2010). Impacts of non-native fishes on Iberian freshwater ichthyofauna: current knowledge and gaps. Aquatic Invasions, 5(3), 239-262. doi:10.3391/ai.2010.5.3.03Lin, X., & Zhang, D. (1999). Inference in generalized additive mixed modelsby using smoothing splines. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(2), 381-400. doi:10.1111/1467-9868.00183Liu, C., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28(3), 385-393. doi:10.1111/j.0906-7590.2005.03957.xMaceda-Veiga, A. (2012). Towards the conservation of freshwater fish: Iberian Rivers as an example of threats and management practices. Reviews in Fish Biology and Fisheries, 23(1), 1-22. doi:10.1007/s11160-012-9275-5Maggini, R., Lehmann, A., Zimmermann, N. E., & Guisan, A. (2006). Improving generalized regression analysis for the spatial prediction of forest communities. Journal of Biogeography, 33(10), 1729-1749. doi:10.1111/j.1365-2699.2006.01465.xMarr, S. M., Olden, J. D., Leprieur, F., Arismendi, I., Äaleta, M., Morgan, D. L., ⊠GarcĂa-Berthou, E. (2013). A global assessment of freshwater fish introductions in mediterranean-climate regions. Hydrobiologia, 719(1), 317-329. doi:10.1007/s10750-013-1486-9MARTĂNEZ-CAPEL, F., GARCĂA DE JALĂN, D., WERENITZKY, D., BAEZA, D., & RODILLA-ALAMĂ, M. (2009). Microhabitat use by three endemic Iberian cyprinids in Mediterranean rivers (Tagus River Basin, Spain). Fisheries Management and Ecology, 16(1), 52-60. doi:10.1111/j.1365-2400.2008.00645.xMouton, A. M., Alcaraz-HernĂĄndez, J. D., De Baets, B., Goethals, P. L. M., & MartĂnez-Capel, F. (2011). Data-driven fuzzy habitat suitability models for brown trout in Spanish Mediterranean rivers. Environmental Modelling & Software, 26(5), 615-622. doi:10.1016/j.envsoft.2010.12.001Mouton, A. M., De Baets, B., & Goethals, P. L. M. (2010). Ecological relevance of performance criteria for species distribution models. Ecological Modelling, 221(16), 1995-2002. doi:10.1016/j.ecolmodel.2010.04.017Muñoz-Mas, R., Fukuda, S., Vezza, P., & MartĂnez-Capel, F. (2016). Comparing four methods for decision-tree induction: A case study on the invasive Iberian gudgeon ( Gobio lozanoiâŻ; Doadrio and Madeira, 2004). Ecological Informatics, 34, 22-34. doi:10.1016/j.ecoinf.2016.04.011Muñoz-Mas, R., Lopez-Nicolas, A., MartĂnez-Capel, F., & Pulido-Velazquez, M. (2016). Shifts in the suitable habitat available for brown trout (Salmo trutta L.) under short-term climate change scenarios. Science of The Total Environment, 544, 686-700. doi:10.1016/j.scitotenv.2015.11.147Muñoz-Mas, R., MartĂnez-Capel, F., GarĂłfano-GĂłmez, V., & Mouton, A. M. (2014). Application of Probabilistic Neural Networks to microhabitat suitability modelling for adult brown trout (Salmo trutta L.) in Iberian rivers. Environmental Modelling & Software, 59, 30-43. doi:10.1016/j.envsoft.2014.05.003Muñoz-Mas, R., MartĂnez-Capel, F., Schneider, M., & Mouton, A. M. (2012). Assessment of brown trout habitat suitability in the Jucar River Basin (SPAIN): Comparison of data-driven approaches with fuzzy-logic models and univariate suitability curves. Science of The Total Environment, 440, 123-131. doi:10.1016/j.scitotenv.2012.07.074Muñoz-Mas, R., Papadaki, C., MartĂnez-Capel, F., Zogaris, S., Ntoanidis, L., & Dimitriou, E. (2016). Generalized additive and fuzzy models in environmental flow assessment: A comparison employing the West Balkan trout (Salmo farioides; Karaman, 1938). Ecological Engineering, 91, 365-377. doi:10.1016/j.ecoleng.2016.03.009Olaya-MarĂn, E. J., MartĂnez-Capel, F., Soares Costa, R. M., & Alcaraz-HernĂĄndez, J. D. (2012). Modelling native fish richness to evaluate the effects of hydromorphological changes and river restoration (JĂșcar River Basin, Spain). Science of The Total Environment, 440, 95-105. doi:10.1016/j.scitotenv.2012.07.093Paredes-Arquiola, J., Solera, A., Martinez-Capel, F., Momblanch, A., & Andreu, J. (2014). Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrological Sciences Journal, 59(3-4), 878-889. doi:10.1080/02626667.2013.821573Platts, P. J., McClean, C. J., Lovett, J. C., & Marchant, R. (2008). Predicting tree distributions in an East African biodiversity hotspot: model selection, data bias and envelope uncertainty. Ecological Modelling, 218(1-2), 121-134. doi:10.1016/j.ecolmodel.2008.06.028Reyjol, Y., Hugueny, B., Pont, D., Bianco, P. G., Beier, U., Caiola, N., ⊠Virbickas, T. (2007). Patterns in species richness and endemism of European freshwater fish. Global Ecology and Biogeography, 16(1), 65-75. doi:10.1111/j.1466-8238.2006.00264.xRibeiro, F., Elvira, B., Collares-Pereira, M. J., & Moyle, P. B. (2007). Life-history traits of non-native fishes in Iberian watersheds across several invasion stages: a first approach. Biological Invasions, 10(1), 89-102. doi:10.1007/s10530-007-9112-2RIBEIRO, F., & LEUNDA, P. M. (2012). Non-native fish impacts on Mediterranean freshwater ecosystems: current knowledge and research needs. Fisheries Management and Ecology, 19(2), 142-156. doi:10.1111/j.1365-2400.2011.00842.xRincon, P. A., Correas, A. M., Morcillo, F., Risueno, P., & Lobon-Cervia, J. (2002). Interaction between the introduced eastern mosquitofish and two autochthonous Spanish toothcarps. Journal of Fish Biology, 61(6), 1560-1585. doi:10.1111/j.1095-8649.2002.tb02498.xRobalo, J. I., Almada, V. C., Levy, A., & Doadrio, I. (2007). Re-examination and phylogeny of the genus Chondrostoma based on mitochondrial and nuclear data and the definition of 5 new genera. Molecular Phylogenetics and Evolution, 42(2), 362-372. doi:10.1016/j.ympev.2006.07.003RomĂŁo, F., Quintella, B. R., Pereira, T. J., & Almeida, P. R. (2011). Swimming performance of two Iberian cyprinids: the Tagus nase Pseudochondrostoma polylepis (Steindachner, 1864) and the bordallo Squalius carolitertii (Doadrio, 1988). Journal of Applied Ichthyology, 28(1), 26-30. doi:10.1111/j.1439-0426.2011.01882.xShiroyama, R., & Yoshimura, C. (2016). Assessing bluegill (Lepomis macrochirus) habitat suitability using partial dependence function combined with classification approaches. Ecological Informatics, 35, 9-18. doi:10.1016/j.ecoinf.2016.06.005Thomas, J. A., & Bovee, K. D. (1993). Application and testing of a procedure to evaluate transferability of habitat suitability criteria. Regulated Rivers: Research & Management, 8(3), 285-294. doi:10.1002/rrr.3450080307Vezza, P., Muñoz-Mas, R., Martinez-Capel, F., & Mouton, A. (2015). Random forests to evaluate biotic interactions in fish distribution models. Environmental Modelling & Software, 67, 173-183. doi:10.1016/j.envsoft.2015.01.005Vilizzi, L., Copp, G. H., & Roussel, J.-M. (2004). Assessing variation in suitability curves and electivity profiles in temporal studies of fish habitat use. River Research and Applications, 20(5), 605-618. doi:10.1002/rra.767Wood, S. N. (2004). Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models. Journal of the American Statistical Association, 99(467), 673-686. doi:10.1198/016214504000000980Wood, S. N. (2006). Generalized Additive Models. doi:10.1201/9781420010404Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. Statistics for Biology and Health. doi:10.1007/978-0-387-87458-
Nutrient adequacy during weight loss interventions: a randomized study in women comparing the dietary intake in a meal replacement group with a traditional food group
<p>Abstract</p> <p>Background</p> <p>Safe and effective weight control strategies are needed to stem the current obesity epidemic. The objective of this one-year study was to document and compare the macronutrient and micronutrient levels in the foods chosen by women following two different weight reduction interventions.</p> <p>Methods</p> <p>Ninety-six generally healthy overweight or obese women (ages 25â50 years; BMI 25â35 kg/m<sup>2</sup>) were randomized into a Traditional Food group (TFG) or a Meal Replacement Group (MRG) incorporating 1â2 meal replacement drinks or bars per day. Both groups had an energy-restricted goal of 5400 kJ/day. Dietary intake data was obtained using 3-Day Food records kept by the subjects at baseline, 6 months and one-year. For more uniform comparisons between groups, each diet intervention consisted of 18 small group sessions led by the same Registered Dietitian.</p> <p>Results</p> <p>Weight loss for the 73% (n = 70) completing this one-year study was not significantly different between the groups, but was significantly different (p †.05) within each group with a mean (± standard deviation) weight loss of -6.1 ± 6.7 kg (TFG, n = 35) vs -5.0 ± 4.9 kg (MRG, n = 35). Both groups had macronutrient (Carbohydrate:Protein:Fat) ratios that were within the ranges recommended (50:19:31, TFG vs 55:16:29, MRG). Their reported reduced energy intake was similar (5729 ± 1424 kJ, TFG vs 5993 ± 2016 kJ, MRG). There was an improved dietary intake pattern in both groups as indicated by decreased intake of saturated fat (†10%), cholesterol (<200 mg/day), and sodium (< 2400 mg/day), with increased total servings/day of fruits and vegetables (4.0 ± 2.2, TFG vs 4.6 ± 3.2, MRG). However, the TFG had a significantly lower dietary intake of several vitamins and minerals compared to the MRG and was at greater risk for inadequate intake.</p> <p>Conclusion</p> <p>In this one-year university-based intervention, both dietitian-led groups successfully lost weight while improving overall dietary adequacy. The group incorporating fortified meal replacements tended to have a more adequate essential nutrient intake compared to the group following a more traditional food group diet. This study supports the need to incorporate fortified foods and/or dietary supplements while following an energy-restricted diet for weight loss.</p
Water velocity limits the temporal extent of herbivore effects on aquatic plants in a lowland river
The role of herbivores in regulating aquatic plant dynamics has received growing recognition from researchers and managers. However, the evidence for herbivore impacts on aquatic plants is largely based on short-term exclosure studies conducted within a single plant growing season. Thus, it is unclear how long herbivore impacts on aquatic plant abundance can persist for. We addressed this knowledge gap by testing whether mute swan (Cygnus olor) grazing on lowland river macrophytes could be detected in the following growing season. Furthermore, we investigated the role of seasonal changes in water current speed in limiting the temporal extent of grazing. We found no relationship between swan biomass density in 1 year and aquatic plant cover or biomass in the following spring. No such carry-over effects were detected despite observing high swan biomass densities in the previous year from which we inferred grazing impacts on macrophytes. Seasonal increases in water velocity were associated with reduced grazing pressure as swans abandoned river habitat. Furthermore, our study highlights the role of seasonal changes in water velocity in determining the length of the mute swan grazing season in shallow lowland rivers and thus in limiting the temporal extent of herbivore impacts on aquatic plant abundance