28 research outputs found

    Dead tired: evaluating the physiological status and survival of neonatal reef sharks under stress

    Get PDF
    Marine protected areas (MPAs) can protect shark populations from targeted fisheries, but resident shark populations may remain exposed to stressors like capture as bycatch and environmental change. Populations of young sharks that rely on shallow coastal habitats, e.g. as nursery areas, may be at risk of experiencing these stressors. The purpose of this study was to characterize various components of the physiological stress response of neonatal reef sharks following exposure to an exhaustive challenge under relevant environmental conditions. To accomplish this, we monitored markers of the secondary stress response and measured oxygen uptake rates (⁠ṀO2⁠) to compare to laboratory-derived baseline values in neonatal blacktip reef (Carcharhinus melanopterus) and sicklefin lemon sharks (Negaprion acutidens). Measurements occurred over three hours following exposure to an exhaustive challenge (gill-net capture with air exposure). Blood lactate concentrations and pH deviated from baseline values at the 3-h sample, indicating that both species were still stressed 3 h after capture. Evidence of a temperature effect on physiological status of either species was equivocal over 28–31°C. However, aspects of the physiological response were species-specific; N. acutidens exhibited a larger difference in blood pH relative to baseline values than C. melanopterus, possibly owing to higher minimum ṀO2⁠. Neither species experienced immediate mortality during the exhaustive challenge; although, single instances of delayed mortality were documented for each species. Energetic costs and recovery times could be extrapolated for C. melanopterus via respirometry; sharks were estimated to expend 9.9 kJ kg−1 (15% of energy expended on daily swimming) for a single challenge and could require 8.4 h to recover. These data suggest that neonatal C. melanopterus and N. acutidens are resilient to brief gill-net capture durations, but this was under a narrow temperature range. Defining species' vulnerability to stressors is important for understanding the efficacy of shark conservation tools, including MPAs

    Tolerance to Hypercarbia Is Repeatable and Related to a Component of the Metabolic Phenotype in a Freshwater Fish

    Get PDF
    Freshwater fish may be exposed to high levels of carbon dioxide (CO2) because of several actions, including anesthesia and high levels of aquatic respiration and potentially as the result of using high-CO2 plumes as a barrier to the movements of invasive fishes. Metabolic phenotype can potentially drive how freshwater fish respond to high CO2. We therefore quantified how tolerance (measured using time to equilibrium loss [ELT]) was driven by metabolic phenotype in a cosmopolitan freshwater fish species, Micropterus salmoides. ELT was repeatable, with 60% of the variance across trials attributable to individual differences. For each fish, standard metabolic rate and maximum metabolic rate were measured using respirometers and time to exhaustion after a chase test was recorded. Fish with high anaerobic performance were less tolerant to elevated CO2, potentially as a result of preexisting metabolic acidosis. Standard metabolic rate and aerobic scope did not predict ELT. Our findings define which fish may be more vulnerable to high CO2, a potential mechanism for this tolerance, and show that tolerance to high CO2 may be acted on by natural selection. Should freshwater ecosystems become elevated in CO2, by either natural means or anthropogenic means, it is possible that there is potential for heritable selection of CO2 tolerance, evidenced by the fact that ELT was found to be repeatable."The study was supported by Illinois Department of Natural Resources (CAFWS-93) and the US Geological Survey, through funds provided to C.D.S. by the Great Lakes Restoration Initiative (G14AC00119)."https://www.journals.uchicago.edu/doi/abs/10.1086/69337

    Same species, different prerequisites: investigating body condition and foraging success in young reef sharks between an atoll and an island system

    Get PDF
    Acquiring and storing energy is vital to sharks of all age-classes. Viviparous shark embryos receive endogenous maternal energy reserves to sustain the first weeks after birth. Then, in order to maintain body condition, sharks must start foraging. Our goal was to understand whether maternal energy investments vary between blacktip reef sharks (Carcharhinus melanopterus) from two populations and to what extent body condition and the initiation of foraging might be affected by presumably variable maternal investments. A total of 546 young sharks were captured at St. Joseph atoll (Seychelles) and Moorea (French Polynesia) between 2014 and 2018, and indices of body condition and percentage of stomachs containing prey were measured. Maternal investment was found to be site-specific, with significantly larger, heavier, and better conditioned individuals in Moorea. Despite these advantages, as time progressed, Moorea sharks exhibited significant decreases in body condition and were slower to initiate foraging. We suggest that the young sharks’ foraging success is independent of the quality of maternal energy resources, and that other factors, such as prey availability, prey quality, and/or anthropogenic stressors are likely responsible for the observed differences across sites. Insights into intraspecific variations in early life-stages may further support site-specific management strategies for young sharks from nearshore habitats

    Analysing tropical elasmobranch blood samples in the field: blood stability during storage and validation of the HemoCue (R) haemoglobin analyser

    Get PDF
    Blood samples collected from wild-caught fishes can provide important information regarding the effects of capture (and thus post-release survival) as well as other stressors. Unfortunately, blood samples often cannot be analysed immediately upon sampling, and blood parameters (e.g. blood oxygen levels and acid-base parameters) are known to change with storage duration due to the metabolic activity of the red blood cells. We obtained blood samples from both untreated and stressed individuals of both blacktip reef shark (Carcharhinus melanopterus) and sicklefin lemon shark (Negaprion acutidens) to determine the effects of storage duration on blood pH, haematocrit and haemoglobin concentration ([Hb]). We found no significant effects after storage on ice for up to 180 minutes. Moreover, to validate the usability of a HemoCue haemoglobin analyser (a point-of-care device), we compared data from this device to [Hb] determined using the cyanomethaemoglobin method with blood samples from 10 individuals from each of the aforementioned species as well as epaulette shark (Hemiscyllium ocellatum). Values from the HemoCue consistently overestimated [Hb], and we therefore developed the necessary correction equations. The correction equations were not statistically different among the three elasmobranch species within the biologically relevant range but did differ from published corrections developed using blood from temperate teleost fishes. Although the HemoCue is useful in field situations, development of species-specific calibration equations may be necessary to ensure the reliability of inter-species comparisons of blood [Hb]. Together, these data should increase confidence in haematological stress indicators in elasmobranch fishes, measurements of which are critical for understanding the impact of anthropogenic stressors on these ecologically important species

    The power struggle: assessing interacting global change stressors via experimental studies on sharks

    Get PDF
    Ocean warming and acidification act concurrently on marine ectotherms with the potential for detrimental, synergistic effects; yet, effects of these stressors remain understudied in large predatory fishes, including sharks. We tested for behavioural and physiological responses of blacktip reef shark (Carcharhinus melanopterus) neonates to climate change relevant changes in temperature (28 and 31 °C) and carbon dioxide partial pressures (pCO2; 650 and 1050 ”atm) using a fully factorial design. Behavioural assays (lateralisation, activity level) were conducted upon 7–13 days of acclimation, and physiological assays (hypoxia tolerance, oxygen uptake rates, acid–base and haematological status) were conducted upon 14–17 days of acclimation. Haematocrit was higher in sharks acclimated to 31 °C than to 28 °C. Significant treatment effects were also detected for blood lactate and minimum oxygen uptake rate; although, these observations were not supported by adequate statistical power. Inter-individual variability was considerable for all measured traits, except for haematocrit. Moving forward, studies on similarly ‘hard-to-study’ species may account for large inter-individual variability by increasing replication, testing larger, yet ecologically relevant, differences in temperature and pCO2, and reducing measurement error. Robust experimental studies on elasmobranchs are critical to meaningfully assess the threat of global change stressors in these data-deficient species

    Validation of a portable, waterproof blood pH analyser for elasmobranchs

    Get PDF
    Quantifying changes in blood chemistry in elasmobranchs can provide insights into the physiological insults caused by anthropogenic stress, and can ultimately inform conservation and management strategies. Current methods for analysing elasmobranch blood chemistry in the field are often costly and logistically challenging. We compared blood pH values measured using a portable, waterproof pH meter (Hanna Instruments HI 99161) with blood pH values measured by an i- STAT system (CG4+ cartridges), which was previously validated for teleost and elasmobranch fishes, to gauge the accuracy of the pH meter in determining whole blood pH for the Cuban dogfish (Squalus cubensis) and lemon shark (Negaprion brevirostris). There was a significant linear relationship between values derived via the pH meter and the i- STAT for both species across a wide range of pH values and temperatures (Cuban dogfish: 6.8-7.1 pH 24-30 degrees C; lemon sharks: 7.0-7.45 pH 25-31 degrees C). The relative error in the pH meter's measurements was similar to +/- 2.7%. Using this device with appropriate correction factors and consideration of calibration temperatures can result in both a rapid and accurate assessment of whole blood pH, at least for the two elasmobranch species examined here. Additional species should be examined in the future across a wide range of temperatures to determine whether correction factors are universal

    Exercise intensity while hooked is associated with physiological status of longline-captured sharks

    Get PDF
    Some shark populations face declines owing to targeted capture and by-catch in longline fisheries. Exercise intensity during longline capture and physiological status may be associated, which could inform management strategies aimed at reducing the impacts of longline capture on sharks. The purpose of this study was to characterize relationships between exercise inten- sity and physiological status of longline-captured nurse sharks (Ginglymostoma cirratum) and Caribbean reef sharks (Carcharhinus perezi). Exercise intensity of longline-captured sharks was quantified with digital cameras and accelerometers, which was paired with blood-based physiological metrics from samples obtained immediately post-capture. Exercise intensity was associated with physiological status following longline capture. For nurse sharks, blood pH increased with capture dur- ation and the proportion of time exhibiting low-intensity exercise. Nurse sharks also had higher blood glucose and plasma potassium concentrations at higher sea surface temperatures. Associations between exercise intensity and physiological sta- tus for Caribbean reef sharks were equivocal; capture duration had a positive relation with blood lactate concentrations and a negative relationship with plasma chloride concentrations. Because Caribbean reef sharks did not appear able to influence blood pH through exercise intensity, this species was considered more vulnerable to physiological impairment. While both species appear quite resilient to longline capture, it remains to be determined if exercise intensity during capture is a useful tool for predicting mortality or tertiary sub-lethal consequences. Fisheries management should consider exercise during cap- ture for sharks when developing techniques to avoid by-catch or reduce physiological stress associated with capture

    Elasmobranch responses to experimental warming, acidification, and oxygen loss—a meta-analysis

    Get PDF
    Despite the long evolutionary history of this group, the challenges brought by the Anthropocene have been inflicting an extensive pressure over sharks and their relatives. Overexploitation has been driving a worldwide decline in elasmobranch populations, and rapid environmental change, triggered by anthropogenic activities, may further test this group's resilience. In this context, we searched the literature for peer-reviewed studies featuring a sustained (>24 h) and controlled exposure of elasmobranch species to warming, acidification, and/or deoxygenation: three of the most pressing symptoms of change in the ocean. In a standardized comparative framework, we conducted an array of mixed-model meta-analyses (based on 368 control-treatment contrasts from 53 studies) to evaluate the effects of these factors and their combination as experimental treatments. We further compared these effects across different attributes (lineages, climates, lifestyles, reproductive modes, and life stages) and assessed the direction of impact over a comprehensive set of biological responses (survival, development, growth, aerobic metabolism, anaerobic metabolism, oxygen transport, feeding, behavior, acid-base status, thermal tolerance, hypoxia tolerance, and cell stress). Based on the present findings, warming appears as the most influential factor, with clear directional effects, namely decreasing development time and increasing aerobic metabolism, feeding, and thermal tolerance. While warming influence was pervasive across attributes, acidification effects appear to be more context-specific, with no perceivable directional trends across biological responses apart from the necessary to achieve acid-base balance. Meanwhile, despite its potential for steep impacts, deoxygenation has been the most neglected factor, with data paucity ultimately precluding sound conclusions. Likewise, the implementation of multi-factor treatments has been mostly restricted to the combination of warming and acidification, with effects approximately matching those of warming. Despite considerable progress over recent years, research regarding the impact of these drivers on elasmobranchs lags behind other taxa, with more research required to disentangle many of the observed effects. Given the current levels of extinction risk and the quick pace of global change, it is further crucial that we integrate the knowledge accumulated through different scientific approaches into a holistic perspective to better understand how this group may fare in a changing ocean

    Estimating oxygen uptake rates to understand stress in sharks and rays

    No full text
    Elasmobranch populations face worldwide declines owing to anthropogenic stressors, with lethal and sub-lethal consequences. Oxygen uptake rates (_ M O2, typically measured in mg O2 kg-1 h-1) can be quantified as proxies of whole-organism aerobic metabolic rates and are relevant to fisheries management and conservation through aerobic performance's relationship with fitness and spatial ecology. The purpose of this review was to better understand how _ M O2 has been and can be applied to predict how elasmobranch populations will respond to current and future anthropogenic stressors. We identified 10 studies spanning 9 elasmobranch species that quantified _ M O2 to understand elasmobranch populations' responses to exposure to anthropogenic stressors. Studies measuring responses to climate change stressors (ocean warming and acidification, declining oxygen content, increasing storm frequency) were most common. Studies with relevance to fisheries stressors used _ M O2 to approximate energetic costs of capture and estimate recovery times in bycatch scenarios. Ecotourism encounters were investigated in the context of increases in energetic requirements owing to anthropogenic disruption of diel activity cycles. Furthermore, we discuss how an understanding of _ M O2 in elasmobranchs has been and can be applied to predict populations' responses to anthropogenic stressors with deliverables for improving species management and conservation. Specifically, _ M O2 can be applied to predict population-level responses to stressors by quantifying associations between _ M O2 and fitness-related processes, spatial ecology, and impact on ecosystem function (via bioenergetics modelling). This review is meant to serve as a callto- action to further bridge the gap between experimental biology and elasmobranch conservation in the "good Anthropocene"

    Tolerance to Hypercarbia is repeatable and related to a component of the metabolic phenotype in a freshwater fish

    No full text
    Freshwater fish may be exposed to high levels of carbon dioxide (CO2) because of several actions, including anesthesia and high levels of aquatic respiration and potentially as the result of using high-CO2 plumes as a barrier to the movements of invasive fishes. Metabolic phenotype can potentially drive how freshwater fish respond to high CO2. We therefore quantified how tolerance (measured using time to equilibrium loss [ELT]) was driven by metabolic phenotype in a cosmopolitan freshwater fish species, Micropterus salmoides. ELT was repeatable, with 60% of the variance across trials attributable to individual differences. For each fish, standard metabolic rate and maximum metabolic rate were measured using respirometers and time to exhaustion after a chase test was recorded. Fish with high anaerobic performance were less tolerant to elevated CO2, potentially as a result of preexisting metabolic acidosis. Standard metabolic rate and aerobic scope did not predict ELT. Our findings define which fish may be more vulnerable to high CO2, a potential mechanism for this tolerance, and show that tolerance to high CO2 may be acted on by natural selection. Should freshwater ecosystems become elevated in CO2, by either natural means or anthropogenic means, it is possible that there is potential for heritable selection of CO2 tolerance, evidenced by the fact that ELT was found to be repeatable
    corecore