214 research outputs found

    Male Astronauts Have Greater Bone Loss and Risk of Hip Fracture Following Long Duration Spaceflights than Females

    Get PDF
    This slide presentation reviews bone loss in males and compares it to female bone loss during long duration spaceflight. The study indicates that males suffer greater bone loss than females and have a greater risk of hip fracture. Two possible reason for the greater male bone loss are that the pre-menopausal females have the estrogen protection and the greater strength of men max out the exercise equipment that provide a limited resistance to 135 kg

    Osteocytes Mechanosensing in NASA Rotating Wall Bioreactor

    Get PDF
    Osteocyte cells are the most abundant (90%) yet least understood bone cell type in the human body. Osteocytes are theorized to be the mechanosensors and transducers of mechanical load for bones, yet the biological mechanism of this action remains elusive. However, recent discoveries in osteocyte cell biology have shed light on their importance as key mechanosensing cells regulating bone remodeling and phosphate homeostasis. The aim of this project was to characterize gene expression patterns and protein levels following exposure of MLO-Y4, a very well characterized murine osteocyte-like cell line, to simulated microgravity using the NASA Rotating Wall Vessel (RWV) Bioreactor. To determine mechanistic pathways of the osteocyte's gravity sensing ability, we evaluated in vitro gene and protein expression of osteocytes exposed to simulated microgravity. Improved understanding of the fundamental mechanisms of mechano transduction at the osteocyte cellular level may lead to revolutionary treatment otions to mitigate the effects of bone loss encountered by astronauts on long duration space missions and provide tailored treatment options for maintaining bone strength of immobilized/partially paralyzed patients here on Earth

    Simulated Microgravity Induces SOST/Sclerostin Upregulation in Osteocytes

    Get PDF
    Osteocytes are theorized to be the mechanosensors and transducers of mechanical forces in bone, yet the biological mechanism of this action remains elusive. Recent evidence suggests that SOST/Sclerostin is an important regulator of mechano-transduction. To investigate the molecular mechanisms of SOST/Sclerostin regulation under in-vitro and ex-vivo unloading we used the NASA Rotating Wall Vessel(RWV) Bioreactor. For in-vitro experiments, MLOY-4 osteocytic cells were seeded at a concentration of 250,000 cells onto 3D collagen scaffold (BD). Scaffolds (4 per condition) were either rotated in a vertical 50ml NASA/bioreactor vessel at 18 rpm (unloaded), cultured in a horizontal 50 ml NASA bioreactor vessel at 18 rpm (control for the sheared environment of vertical rotating vessel), or cultured in a static T-75 cm dish (static condition ) for 7days. For ex-vivo experiments, calvaria bones were harvested from 12-week old C57/Bl6 mice and sequentially digested with type I/II collagenase to remove periosteal osteoblasts. Calvaria halves (10 per condition) were then exposed to the same set of culture conditions described above. Simulated unloading, as achieved in the NASA RWV, resulted in enlarged, round osteocytes, as assessed by H&E staining, that was reminiscent of prior reports of unloading causing loss of osteocyte morphology and dendritic network connectivity. Semiquantitative realtime qPCR and immunohistochemistry from both in-vitro and ex-vivo RWV experiments demonstrated a four-fold up-regulation of SOST/Sclerostin. Furthermore, mRNA of the transcriptional SOST enhancer Mef2C was upregulated 1.4 fold in ex-vivo calvaria subjected to unloading conditions of the NASA RWV, suggesting that Mef2C might be an important regulator of mechano-sensation. These findings are consistent with results from seven day hindlimb unloading experiments, C57/B6 females, conducted in our laboratory and validate the use of the NASA RWV as a tool to study osteocyte mechanotransductio

    Retaining Residual Ovarian Tissue following Ovarian Failure Has Limited Influence on Bone Loss in Aged Mice

    Get PDF
    Previous work showed that retaining residual ovarian tissue protects young mice from accelerated bone loss following ovarian failure. The present study was designed to determine whether this protection is also present in aged animals. Aged (9–12 months) C57BL/6Hsd female mice were divided into: CON (vehicle), VCD (160 mg/kg; 15d), or OVX (ovariectomized). Lumbar BMD was monitored by DXA and μCT used to assess vertebral microarchitecture. BMD was not different between VCD and CON at any time point but was lower (P < .05) than baseline, starting 1 month after ovarian failure in VCD and OVX mice. Following μCT analysis there were no differences between CON and VCD, but OVX mice had lower bone volume fraction, trabecular thickness, and a trend for decreased connectivity density. These findings provide evidence that retention of residual ovarian tissue may protect aged follicle-depleted mice from accelerated bone loss to a lesser extent than that observed in young mice

    Vascular deficits contributing to skeletal fragility in type 1 diabetes

    Get PDF
    Over 1 million Americans are currently living with T1D and improvements in diabetes management have increased the number of adults with T1D living into later decades of life. This growing population of older adults with diabetes is more susceptible to aging comorbidities, including both vascular disease and osteoporosis. Indeed, adults with T1D have a 2- to 3- fold higher risk of any fracture and up to 7-fold higher risk of hip fracture compared to those without diabetes. Recently, diabetes-related vascular deficits have emerged as potential risks factors for impaired bone blood flow and poor bone health and it has been hypothesized that there is a direct pathophysiologic link between vascular disease and skeletal outcomes in T1D. Indeed, microvascular disease (MVD), one of the most serious consequences of diabetes, has been linked to worse bone microarchitecture in older adults with T1D compared to their counterparts without MVD. The association between the presence of microvascular complications and compromised bone microarchitecture indicates the potential direct deleterious effect of vascular compromise, leading to abnormal skeletal blood flow, altered bone remodeling, and deficits in bone structure. In addition, vascular diabetic complications are characterized by increased vascular calcification, decreased arterial distensibility, and vascular remodeling with increased arterial stiffness and thickness of the vessel walls. These extensive alterations in vascular structure lead to impaired myogenic control and reduced nitric-oxide mediated vasodilation, compromising regulation of blood flow across almost all vascular beds and significantly restricting skeletal muscle blood flow seen in those with T1D. Vascular deficits in T1D may very well extend to bone, compromising skeletal blood flow control, and resulting in reduced blood flow to bone, thus negatively impacting bone health. Indeed, several animal and ex vivo human studies report that diabetes induces microvascular damage within bone are strongly correlated with diabetes disease severity and duration. In this review article, we will discuss the contribution of diabetes-induced vascular deficits to bone density, bone microarchitecture, and bone blood flow regulation, and review the potential contribution of vascular disease to skeletal fragility in T1D

    Combined Effects of Botulinum Toxin Injection and Hind Limb Unloading on Bone and Muscle

    Get PDF
    Bone receives mechanical stimulation from two primary sources, muscle contractions and external gravitational loading; but the relative contribution of each source to skeletal health is not fully understood. Understanding the most effective loading for maintaining bone health has important clinical implications for prescribing physical activity for the treatment or prevention of osteoporosis. Therefore, we investigated the relative effects of muscle paralysis and reduced gravitational loading on changes in muscle mass, bone mineral density, and microarchitecture. Adult female C57Bl/6J mice (n = 10/group) underwent one of the following: unilateral botulinum toxin (BTX) injection of the hind limb, hind limb unloading (HLU), both unilateral BTX injection and HLU, or no intervention. BTX and HLU each led to significant muscle and bone loss. The effect of BTX was diminished when combined with HLU, though generally the leg that received the combined intervention (HLU+BTX) had the most detrimental changes in bone and muscle. We found an indirect effect of BTX affecting the uninjected (contralateral) leg that led to significant decreases in bone mineral density and deficits in muscle mass and bone architecture relative to the untreated controls; the magnitude of this indirect BTX effect was comparable to the direct effect of BTX treatment and HLU. Thus, while it was difficult to definitively conclude whether muscle force or external gravitational loading contributes more to bone maintenance, it appears that BTX-induced muscle paralysis is more detrimental to muscle and bone than HLU.National Institutes of Health (U.S.) (H R21 AR057522)United States. National Aeronautics and Space Administration (NNX10AE39G)National Space Biomedical Research Institute (NASA NCC 9-58)United States. National Aeronautics and Space Administration (NASA-Jenkins predoctoral fellowship)Northrop Grumman Corporation (Aerospace Systems PhD Training Fellowship

    Red and White Blood Cell Counts Are Associated With Bone Marrow Adipose Tissue, Bone Mineral Density, and Bone Microarchitecture in Premenopausal Women

    Full text link
    Bone marrow adipose tissue (BMAT) resides within the bone marrow microenvironment where its function remains poorly understood. BMAT is elevated in anorexia nervosa, a disease model of chronic starvation, despite depletion of other fat depots. In addition to BMAT, the marrow microenvironment also consists of osteoblast and hematopoietic progenitors. BMAT is inversely associated with bone mineral density (BMD) in multiple populations including women with anorexia nervosa, and regulates hematopoiesis in animal models. We hypothesized that BMAT would be associated with circulating populations of hematopoietic cells (red and white blood cells) in humans and performed a post hoc analysis of two studies—a cross‐sectional study and a longitudinal study—to investigate this hypothesis. We studied 89 premenopausal women cross‐sectionally (median age [interquartile range], 27 [24.5, 31.7] years), including 35 with anorexia nervosa. We investigated associations between red blood cell (RBC) and white blood cell (WBC) counts and BMAT assessed by 1H‐magnetic resonance spectroscopy, BMD assessed by DXA, and bone microarchitecture assessed by HR‐pQCT. In addition, we analyzed longitudinal data in six premenopausal women with anorexia nervosa treated with transdermal estrogen for 6 months and measured changes in BMAT and blood cell counts during treatment. Cross‐sectionally, BMAT was inversely associated with WBC and RBC counts. In contrast, BMD and parameters of bone microarchitecture were positively associated with WBC and RBC. In women with anorexia nervosa treated with transdermal estrogen for 6 months, decreases in BMAT were significantly associated with increases in both RBC and hematocrit (rho = −0.83, p = 0.04 for both). In conclusion, we show that BMAT is inversely associated with WBC and RBC in premenopausal women, and there is a potential association between longitudinal changes in BMAT and changes in RBC. These associations warrant further study and may provide further insight into the role and function of this understudied adipose depot. © 2020 American Society for Bone and Mineral Research.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155991/1/jbmr3986.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155991/2/jbmr3986_am.pd
    corecore