1,119 research outputs found
Feelings as traces of colonialism. The online debate about compensation for the Indo-European community in the Netherlands analyzed through the sociology of emotions.
This thesis investigates the contemporary online debate about compensation for the Indo-European community in the Netherlands, using the sociology of emotions as a theoretical lens. It consists of a qualitative text analysis of posts and comments in the Indo-European blogosphere, respectively from Blimbing, Indisch4Ever and Java Post. Readers’ letters published in Moesson – a monthly magazine devoted to the Indo-European community – are used as an additional source.
Anger is a prominent emotion in the Indo-European blogosphere. Differentiating the range of emotions revolving around compensation allows for the act of being angry to be seen as an act of emancipation in a postcolonial context, in which behaviour previously reserved to the former colonizer, is appropriated. However fulfilling the performance of anger may be on the individual level, it complicates the possibilities for dialogue on a societal level by enforcing opposing identities of protestors versus government. This leads commenters in the Indo-European blogosphere to continue to regard the Dutch government with distance and distrust. It also causes the debate about compensation to rarely transcend its financial level, rather than be regarded as part of a wider process of recognition
Non-linear photonic crystals as a source of entangled photons
Non-linear photonic crystals can be used to provide phase-matching for
frequency conversion in optically isotropic materials. The phase-matching
mechanism proposed here is a combination of form birefringence and phase
velocity dispersion in a periodic structure. Since the phase-matching relies on
the geometry of the photonic crystal, it becomes possible to use highly
non-linear materials. This is illustrated considering a one-dimensional
periodic AlGaAs / air structure for the generation of 1.5
m light. We show that phase-matching conditions used in schemes to create
entangled photon pairs can be achieved in photonic crystals.Comment: 4 pages, 3 figure
High photon number path entanglement in the interference of spontaneously downconverted photon pairs with coherent laser light
We show that the quantum interference between downconverted photon pairs and
photons from coherent laser light can produce a maximally path entangled
N-photon output component with a fidelity greater than 90% for arbitrarily high
photon numbers. A simple beam splitter operation can thus transform the
2-photon coherence of down-converted light into an almost optimal N-photon
coherence.Comment: 5 pages, including 2 figures and 1 table, final version for
publication as rapid communication in Phys. Rev.
Efficiency of feedback process in cavity quantum electrodynamics
Utilizing the continuous frequency mode quantization scheme, we study from
first principle the efficiency of a feedback scheme that can generate maximally
entangled states of two atoms in an optical cavity through their interactions
with a single input photon. The spectral function of the photon emitted from
the cavity, which will be used as the input of the next round in the feedback
process, is obtained analytically. We find that the spectral function of the
photon is modified in each round and deviates from the original one. The
efficiency of the feedback scheme consequently deteriorates gradually after
several rounds of operation.Comment: 11 pages, 5 figures, accepted for publication in Journal of Physics
Demonstration of Non-Deterministic Quantum Logic Operations using Linear Optical Elements
Knill, Laflamme, and Milburn recently showed that non-deterministic quantum
logic operations could be performed using linear optical elements, additional
photons (ancilla), and post-selection based on the output of single-photon
detectors [Nature 409, 46 (2001)]. Here we report the experimental
demonstration of two logic devices of this kind, a destructive controlled-NOT
(CNOT) gate and a quantum parity check. These two devices can be combined with
a pair of entangled photons to implement a conventional (non-destructive) CNOT
that succeeds with a probability of 1/4.Comment: 4 pages, 5 figures; Minor change
Strong coupling between single photons in semiconductor microcavities
We discuss the observability of strong coupling between single photons in
semiconductor microcavities coupled by a chi(2) nonlinearity. We present two
schemes and analyze the feasibility of their practical implementation in three
systems: photonic crystal defects, micropillars and microdisks, fabricated out
of GaAs. We show that if a weak coherent state is used to enhance the chi(2)
interaction, the strong coupling regime between two modes at different
frequencies occupied by a single photon is within reach of current technology.
The unstimulated strong coupling of a single photon and a photon pair is very
challenging and will require an improvement in mirocavity quality factors of
2-4 orders of magnitude to be observable.Comment: 4 page
Quantum Connectivity of Space-Time and Gravitationally Induced Decorrelation of Entanglement
We discuss an alternative formulation of the problem of quantum optical
fields in a curved space-time using localized operators. We contrast the new
formulation with the standard approach and find observable differences for
entangled states. We propose an experiment in which an entangled pair of
optical pulses are propagated through non-uniform gravitational fields and find
that the new formulation predicts de-correlation of the optical entanglement
under experimentally realistic conditions
High-Fidelity Teleportation of Independent Qubits
Quantum teleportation is one of the essential primitives of quantum
communication. We suggest that any quantum teleportation scheme can be
characterized by its efficiency, i.e. how often it succeeds to teleport, its
fidelity, i.e. how well the input state is reproduced at the output, and by its
insensitivity to cross talk, i.e. how well it rejects an input state that is
not intended to teleport. We discuss these criteria for the two teleportation
experiments of independent qubits which have been performed thus far. In the
first experiment (Nature {\bf 390},575 (1997)) where the qubit states were
various different polarization states of photons, the fidelity of teleportation
was as high as 0.80 0.05 thus clearly surpassing the limit of 2/3 which
can, in principle, be obtained by a direct measurement on the qubit and
classical communication. This high fidelity is confirmed in our second
experiment (Phys. Rev. Lett. {\bf 80}, 3891 (1998)), demonstrating entanglement
swapping, that is, realizing the teleportation of a qubit which itself is still
entangled to another one. This experiment is the only one up to date that
demonstrates the teleportation of a genuine unknown quantum state.Comment: 13 pages, Latex, 5 figures(eps), to appear in Journal of Modern
Optic
Time-Resolved Two-Photon Quantum Interference
The interference of two independent single-photon pulses impinging on a beam
splitter is analysed in a generalised time-resolved manner. Different aspects
of the phenomenon are elaborated using different representations of the
single-photon wave packets, like the decomposition into single-frequency field
modes or spatio-temporal modes matching the photonic wave packets. Both
representations lead to equivalent results, and a photon-by-photon analysis
reveals that the quantum-mechanical two-photon interference can be interpreted
as a classical one-photon interference once a first photon is detected. A novel
time-dependent quantum-beat effect is predicted if the interfering photons have
different frequencies. The calculation also reveals that full two-photon fringe
visibility can be achieved under almost any circumstances by applying a
temporal filter to the signal.Comment: 6 pages, 4 figure
- …