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Abstract
Amicropore-filtration method was used to reduce the proportion of plant DNA in microbial DNA samples isolated from roots prior
to sequencing.We tested the impact of this pre-sequencing filtration methodology and used it to characterize the root microbiome of
maize grown on two soils with different fertility levels. The micropore filtration reduced plant DNA contamination and unveiled
potential in the N-poor soil for N fixation in roots and phosphate uptake by roots in the phosphate-poor soil. Our methodology and
findings allude to the potential capability of plants to initiate plant-microbe interactions under sub-optimal soil fertility.

Keywords Rhizosphere microbiome . Plant genes, metabarcoding

Introduction

Micro-organisms exist in communities with several levels of
interactions within and between microbial taxa (Cao et al.
2018). This has necessitated the advancement of microbiology
research from single-microbe studies to community-level
microbiome investigations (O’Malley and Skillings 2018).
The insights gained from these microbiome studies include
the observation of how a suppressive interaction between
two microbes can be beneficial to the plant host (Fávaro
et al. 2012; Tshikantwa et al. 2018). In fact, there are reports
showing the potential benefits of the root-associated
microbiome in maize under different environmental condi-
tions (Beirinckx et al. 2020; Gomes et al. 2018).

Microbiome studies have benefited from the advancement in
DNA sequencing technology that enabled the analysis of
community-level interactions in a culture-independent manner
(Hugenholtz et al. 1998; Jany and Barbier 2008; Su et al. 2012).
Among the two major approaches used in DNA sequencing,

whole-genome sequencing (metagenomics) and amplicon se-
quencing (metabarcoding), the latter that is cheaper and less-
demanding on computing capacity involves the amplification
of microbial marker genes like the 16S rRNA and ITS (internal
transcribed spacer) for bacteria and fungi, respectively, and se-
quencing of the amplicons (Banchi et al. 2018; Lasa et al. 2019).

Amplicon sequencing has been used in several studies to
identify microbial composition and abundance of the microbiota
from different sources including plant roots (Beckers et al. 2016;
Ma et al. 2020). The major limitation of such metabarcoding
studies on plant microbiome is that the microbial marker genes
share an evolutionary origin, and hence nucleotide sequences,
with plant organelles, including mitochondria, chloroplasts, and
other plastids (Hanshew et al. 2013). Therefore, the primers used
to generate the amplicons, amplify DNA from both microbes
and plants for sequencing, eventually limiting microbial identi-
fication (Zaheer et al. 2018). To circumvent this limitation, we
used a pre-DNA-isolation filtration protocol aimed at reducing
the proportion of plant cells in ground root tissues using a size
discrimination filtration technique and evaluated its efficacy in
the characterization of maize root microbiome.

Materials and methods

Planting and sample collection

Maize (cv. NK Falkone) was grown in 0.5 L pots containing
two soil types, Soil_A—from an experimental station, and
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Soil_B—an agricultural soil. The main properties of soil A
were sand 7%; silt 63%; clay 23%; pH 7.2; organic C 1.9%;
total N 2140 mg/kg; and available P 0.3%. The main proper-
ties of soil B were sand 43%; silt 40%; clay 13%; pH 5.9;
organic C 1.3%; total N 1240 mg/kg; and available P 0.6%.
Seeds sown directly into the pots germinated within 4 to 6
days post-planting and were subsequently grown for 3 weeks
under greenhouse conditions of 16/8 h day/night and 27/21 °C
day/night temperature from March to April 2019. Five pot-
replicates per soil were used and each pot contained 3 plants.
The plant roots were harvested at the V3–V4 stages (3 to 4
true leaves) and carefully but thoroughly washed in
phosphate-buffered solution (PBS: 5.8 mM Na2HPO4•7H2O
+ 4.2 mM NaH2PO4•H2O + sterile water until a volume of 1
L) to remove any rhizosphere soil. Root samples were collect-
ed on ice and stored at −80 °C until DNA isolation.

Sample processing and DNA isolation

Roots were ground in liquid nitrogen with mortar and pestle,
and DNA was directly extracted from ~100 mg of the 5 rep-
licates per soil using the QIAGEN DNeasy PowerSoil kit
according to the manufacturer’s specification. Also, 4.5 g of
the ground root tissue from each of the 5 replicates per soil
was thawed in 25 mL PBS and shaken vigorously to form a
homogenous suspension (see Supplementary Fig. S1). To get
rid of plant cells, which are generally larger than microbial
cells, a 144 cm2 piece of sterilized Miracloth (pore size 22
μm) folded into eight layers and trimmed to a dimension of
3 cm × 3 cm was inserted into a disassembled 50-mL syringe
using a sterilized pair of forceps until the nozzle-base of the
syringe was sealed by the Miracloth. The ground root in PBS
suspension was subsequently carefully applied on the
Miracloth and pressed through theMiracloth using the syringe
piston. The filtrate was then centrifuged at 8500 g in a Hettich
Rotina 420R refrigerated centrifuge for 20 min at 4 °C. The
supernatant was discarded and the sediment containingmainly
microbial cells was used for DNA isolation using the
QIAGEN DNeasy UltraClean Microbial Kit according to the
manufacturer’s specification. A microbial kit was used instead
of PowerSoil kit to avoid DNA shredding of the microbes
which could occur if PowerSoil kit is used since there is no
microbial cell protection by soil or plant root particles. The
PowerSoil kit and Microbial kit are from the same manufac-
turer and employ the same technique in DNA extraction.
DNA yield was measured using a NanoDrop ND1000
spectrophotometer.

Metabarcoding and data analyses

For identification and quantification of bacterial and fungal
communities, the bacterial 16S ribosomal RNA gene and fun-
gal ITS genes were PCR-amplified using the following

degenerate primers: V3-V4 (341f-806bR) primers for 16S (5′-
3 ′, forward: CCTACGGGAGGCAGCAG; reverse:
GGACTACHVGGGTWTCTAAT) (Takahashi et al. 2014)
and ITS1f-lTS2 for fungal ITS (5′-3′, forward: CTTGGTCA
TTTAGAGGAAGTAA; reverse: GCTGCGTTCTTCAT
CGATGC) (Ihrmark et al. 2012). As a check for possible
DNA contamination in the above protocols, ZymoBIOMICS
microbial community standards were included in the workflow
as both positive and negative controls. Following DNA ampli-
fication using AccuStart II PCR ToughMix (55 °C/33 PCR
cycles) and library preparation, Illumina MiSeq sequencing
was used for paired-end sequencing of the amplicons with read
lengths of 300bp.

DADA2 and Phyloseq packages were used to analyze the
sequenced reads (McMurdie and Holmes 2013; Callahan et al.
2016). Briefly, forward- and reverse reads were trimmed based
on Phred read quality score threshold of 30 allowing 290bp and
250bp of forward and reverse reads, respectively for reads over-
lap. ITS reads were not trimmed to avoid losing relevant infor-
mation. ITS databases like UNITE provide a good coverage of
fungal taxa although many of the sequences may not be iden-
tified to specific taxa in comparison to the LSU (large subunit)
marker gene which in turn may affect alpha diversity (Xue et al.
2019). After de-noising sequencing errors using predicted and
observed error rates, the forward and reverse reads were
merged to infer sequence variants. Chimeric sequences were
removed using the consensus method and the SILVA reference
(release 132) was used for taxonomic assignment. The read
counts per sequence variant were normalized using
rarefy_even_depth of Phyloseq R package to account for se-
quencing depth bias. However, for differential abundance com-
putation using DESeq2, raw reads were converted into a
DESeq object using phyloseq_to_deseq2 function and
DESeq2 was used for the normalization of library depth.
Statistical significance of the pre-treatment effects was tested
with an analysis of deviance using the manyglm function of
mvabund package, based on 5000 bootstrap iterations (Wang
et al. 2012), whereas the difference in reads assignment was
tested with simple ANOVA in R studio version 3.6

Results

Sequenced reads assignment and sequencing depth

The proportions of sequenced reads from plant organelles and
microbial 16S or ITSwere investigated. Plant reads were iden-
tified and sorted out as belonging to the order “Chloroplast”
and/or family, “Mitochondria”. In the filtered samples, more
reads were sequenced from bacterial 16S amplicons than from
plant organelles, unlike in unfiltered samples (Fig. 1). Fungal
ITS sequencing, as expected, did not pick up plant sequences
(data not shown), but could be used to assess the impact of the
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protocol on off-target microbes. Furthermore, the numbers of
sequenced reads were generally higher in the filtered than
unfiltered samples (Table 1), probably due to random se-
quencing bias. The proportion of 16S reads assigned to bacte-
rial species (Amplicon Sequence Variants, ASVs) were sig-
nificantly higher in filtered samples than in the unfiltered,
whereas there was no effect on the ITS reads (Table 1). The
significantly higher percentage of assigned ITS reads com-
pared to the 16S may be linked to the use of untrimmed ITS
sequences in the analysis or the better coverage of fungal
diversity in the UNITE database by our sequencing depth than
bacterial diversity. To eliminate possible sequencing depth
biases, only normalized assigned counts were used for down-
stream analyses.

Principal coordinate analysis (PCoA) of distance relation-
ships among samples with Bray-Curtis metrics based on the
normalized read counts showed that there is a significantly
higher variation among the unfiltered samples than the filtered
samples for 16S sequences (Supplementary Fig. S2a, b).
Furthermore, analyses of deviance showed that for the 16S
normalized read counts, both soil type and micropore filtration
pre-treatment, significantly affected the amplicon sequence
variants (ASVs) (Supplementary Table ST1), but no effect
was detected on fungal (ITS) ASVs (data not shown).

Rarefaction curves showed indeed that filtered samples had
more sequencing depth and species abundance than the unfil-
tered samples for bacterial (16S) but not fungal (ITS) read
counts (Supplementary Fig. S2c, d).

Root microbial abundance

Microbial abundance plots showed that filtered samples in
both soil types recorded significantly more bacterial ASVs
with less variations than unfiltered samples (Fig. 2a, b). But
there was no effect on fungal abundance (Fig. 2c). However,
these abundance plots did not show a significant difference in
microbial abundance between Soil_A and Soil_B.
Nonetheless, there was more overlap of assigned ASVs be-
tween treatments than between soils, suggesting that the pre-
treatment did not negatively impact on the identification of
microbes; rather, it improved the number of ASVs that could
be identified (Fig. 2d, e).

Identification and differential abundance of root
microbial composition

We compared the treatment approaches in terms of differential
microbial abundance so as to ascertain the best approach for

Table 1 Total counts of sequenced reads, non-normalized reads assigned to ASVs (Amplicon Sequence Variants) after processing and their
percentages

16S ITS

Soil Pre-
treatment

Sequenced reads Assigned reads Assigned reads
(%)

Sequenced reads Assigned reads Assigned reads (%)

A Filtered 220,788 64,966 29.4b 356,385 261,114 73.3c

Unfiltered 169,000 29,661 17.6a 282,477 210,221 74.4c

B Filtered 235,473 77,084 32.7b 295,538 199,435 67.5c

Unfiltered 106,133 22,790 21.5a 248,109 170,364 68.7c

16S normalized assigned counts per sample: 2165; ITS normalized assigned counts per sample: 16,728
a,b,c Significant differences between assigned reads % using ANOVA test

Fig. 1 Total number (sum–left
axis) and mean number (average–
right axis) of 16S sequenced reads
mapping to bacterial and plant
DNA in filtered and unfiltered
samples of Soil_A and Soil_B.
*Denotes significant difference at
α = 0.01 (ANOVA). Error bars
are standard deviations
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analyzing the differences in microbial abundance and compo-
sition between soils. In the root microbiome recruited in
Soil_A, 24 bacterial ASVs were differentially more abun-
dant in filtered than in unfiltered samples at p<0.01, while
8 ASVs were differentially more abundant even at
p<0.001 with zero read counts in unfiltered samples
(Supplementary Fig. S3.1). In Soil_B, four bacterial
ASVs were differentially more abundant in filtered sam-
ples versus the unfiltered treatment; and in one instance,
an ASV was more abundant in unfiltered samples
(Supplementary Fig. S3.1). Fungal abundance was, how-
ever, not differentially affected (data not shown).

A comparison of the fungal and bacterial phyla abun-
dances between roots from the two soils shows some
differences although further studies would be required
to confirm these observations. Firstly, there are 24 folds
more non-annotated fungi detected in Soil_B than Soil_A
suggesting the existence of more fungal diversity in
Soil_B (Supplementary Fig. S3.2). Ascomycota was the
most abundant fungal phylum in both soils, whereas
Glomeromycota that includes arbuscular mycorrhizal fun-
gi (AMF) was more abundant in roots of Soil_A than
Soil_B. For bacterial abundance, Proteobacteria and
Bacteroidetes were the most abundant phyla in roots
from both soils (Supplementary Fig. S3.2). Generally,
both soils showed a higher abundance of fungal phyla
than bacteria.

There were 84 bacterial ASVsmore abundant in roots from
Soil_A when compared to Soil_B, whereas 71 bacterial ASVs
(including Rhizobium) were more abundant in Soil_B roots
compared to those in Soil_A (Supplementary Fig. S3.3).
Among the fungal ASVs, 92 genera were differentially more
abundant in roots of Soil_A than in Soil_B, whereas 73 genera
were differentially more abundant in roots of Soil_B than in
Soil_A (Supplementary Fig. S3.4). Interestingly, differentially
abundant AMF including Funneliformis, Dominikia and
Rhizophagus were found only in roots of Soil_A and not in
Soil_B.

Discussion

Unravelling plant microbiome through DNA sequencing is
challenging as a precaution is required to avoid plant DNA
interference with microbial sequencing depth (Beckers et al.
2016; Fricker et al. 2019). Previous studies tackling this chal-
lenge compared several primers for their specificity in ampli-
fying bacterial DNA (Beckers et al. 2016; Hanshew et al.
2013). The forward primers, 799F and its derivatives,
emerged from these studies as the most specific for reducing
plant plastid contamination. However, the coverage of the
bacterial diversity by 799F (79.7%) is limited when compared
with the coverage by 341F (91.2%) that we used in our study

(Beckers et al. 2016). Interestingly, the plant DNA sequence
contamination range in Beckers et al. (2016) with 341F primer
is between 40 and 91% depending on the reverse primer com-
bination, while with our micropore-filtration protocol, the
plant DNA contamination was reduced to 30–40% (Fig. 1).
This improvement suggests that efforts in selecting applicable
primer pair combinations can be further boosted when com-
bined with our filtration protocol.

To our knowledge, the only publication of efforts to
reduce plant organelle contaminants prior to DNA isola-
tion and sequencing is a Nycodenz gradient-based separa-
tion technique (da Cunha 2016). The Nycodenz separation
approach is intended to obtain uncontaminated bacterial
cells, but fungal cells are also lost in the process. This
means that an extra DNA isolation is required to capture
the fungal component in microbiome studies. In our pro-
tocol, however, the same micropore filtrate was used to
extract both bacterial and fungal DNA for sequencing.
Importantly, our protocol did not alter the outcome of
the fungal ITS sequencing (Supplementary Fig. S2,
Table 1). Furthermore, the total number of sequenced
reads (Table 1) and reads mapping to bacteria (Fig. 1)
showed that our filtration protocol did not lead to any
losses of microbial data. This is logical because the filtra-
tion system allows sufficient room for microbial cells to
be collected in the filtrate while filtering out significant
proportion of plant material.

For application purposes, in plant microbiome profiling,
the results from our new protocol show the importance of
microbial read depth in computing the composition and
differential abundance of microbes, especially bacteria
(Supplementary Fig. S3.1). For instance, eight bacterial
species could be detected in roots of Soil_A and four in
roots of Soil_B only by the filtration pre-treatment
(Supplementary Fig. S3.1). Additionally, the plant system,
Zea mays, on which we tested our protocol in two soils
suggests that this methodology has a potential for use in
investigating plant-microbe interactions in different soils,
but this needs further studies in more plant systems and
soil types. Among the observations from our limited test
system are the abundance of Rhizobium species in the N-
poor soil (Supplementary Fig. S3.3), and the presence of
arbuscular mycorrhizal fungi (AMF) in the phosphate-poor
soil (Supplementary Fig. S3.4), pointing to the potential
for initiation of plant root interaction with microbes under
nutrient deficiency (Cocking et al. 1994; Rosenblueth et al.
2018; Cotton et al. 2019; Kobae 2019).

In conclusion, we demonstrate here the importance of
filtering-out plant cells before DNA extraction in microbiome
studies, and the implementation of that in understanding plant
response to sub-optimal soil fertility. The protocol, in our
view, has a large application potential, for research in ecology,
agriculture and biodiversity. A scaled-up production of
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syringes with an inbuilt-filtration system as described here,
would facilitate the routine implementation of this protocol
in plant microbiome studies.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00374-021-01555-3.
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