5 research outputs found

    Stochastic modelling of flood phenomena based on the combination of mechanist and systemic approaches

    Get PDF
    Flood forecasting describes the rainfall-runoff transformation using simplified representations. These representations are based on either empirical descriptions, or on equations of classical mechanics of the involved physical processes. The performances of the existing flood predictions are affected by several sources of uncertainties coming not only from the approximations involved but also from imperfect knowledge of input data, initial conditions of the river basin, and model parameters. Quantifying these uncertainties enables the decision maker to better interpret the predictions and constitute a valuable decision-making tool for flood risk management. Uncertainty analysis on existing rainfall-runoff models are often performed using Monte Carlo (MC)- simulations. The implementation of this type of techniques requires a large number of simulations and consequently a potentially important calculation time. Therefore, quantifying uncertainties of real-time hydrological models is challenging. In this project, we develop a methodology for flood prediction based on Bayesian networks (BNs). BNs are directed acyclic graphs where the nodes correspond to the variables characterizing the modelled system and the arcs represent the probabilistic dependencies between these variables. The presented methodology suggests to build the RBs from the main hydrological factors controlling the flood generation, using both the available observations of the system response and the deterministic equations describing the processes involved. It is, thus, designed to take into account the time variability of different involved variables. The conditional probability tables (parameters), can be specified using observed data, existing hydrological models or expert opinion. Thanks to their inference algorithms, BN are able to rapidly propagate, through the graph, different sources of uncertainty in order to estimate their effect on the model output (e.g. riverflow). Several case studies are tested. The first case study is the Salat river basin, located in the south-west of France, where a BN is used to simulate the discharge at a given station from the streamflow observations at 3 hydrometric stations located upstream. The model showed good performances estimating the discharge at the outlet. Used in a reverse way, the model showed also satisfactory results when characterising the discharges at an upstream station by propagating back discharge observations of some downstream stations. The second case study is the Sagelva basin, located in Norway, where a BN is used to simulate the accumulation of snow water equivalent (SWE) given available weather data observations. The performances of the model are affected by the learning dataset used to train the BN parameters. In the absence of relevant observation data for learning, a methodology for learning the BN-parameters from deterministic models is proposed and tested. The resulted BN can be used to perform uncertainty analysis without any MC-simulations to be performed in real-time. From these case studies, it appears that BNs are a relevant decisionsupport tool for flood risk management

    Critical slope for laminar transcritical shallow-water flows

    Get PDF
    Backwater curves denote the depth profiles of steady flows in a shallow open channel. The classification of these curves for turbulent regimes is commonly used in hydraulics. When the bottom slope I is increased, they can describe the transition from fluvial to torrential regimes. In the case of an infinitely wide channel, we show that laminar flows have the same critical height hc as that in the turbulent case. This feature is due to the existence of surface slope singularities associated to plug-like velocity profiles with vanishing boundary-layer thickness. We also provide the expression of the critical surface slope as a function of the bottom curvature at the critical location. These results validate a similarity model to approximate the asymptotic Navier–Stokes equations for small slopes I with Reynolds number Re such that ReI is of order 1

    A Bayesian network approach for flash flood risk assessment

    Get PDF
    Climate change is contributing to the increase of natural disasters such as extreme weather events. Sometimes, these events lead to sudden flash floods causing devastating effects on life and property. Most recently, many regions of the French Mediterranean perimeter have endured such catastrophic flood events; Var (October 2015), Ardèche (November 2014), Nîmes (October 2014), Hérault, Gard and Languedoc (September 2014), and Pyrenees mountains (Jun 2013). Altogether, it resulted in dozens of victims and property damages amounting to millions of euros. With this heavy loss in mind, development of hydrological forecasting and warning systems is becoming an essential element in regional and national strategies. Flash flood forecasting but also monitoring is a difficult task because small ungauged catchments (10 km2) are often the most destructive ones as for the extreme flash flood event of September 2002 in the Cévennes region (France) (Ruin et al., 2008). The problem of measurement/prediction uncertainty is particularly crucial when attempting to develop operational flash-flood forecasting methods. Taking into account the uncertainty related to the model structure itself, to the model parametrization or to the model forcing (spatio–temporal rainfall, initial conditions) is crucial in hydrological modelling. Quantifying these uncertainties is of primary importance for risk assessment and decision making. Although significant improvements have been made in computational power and distributed hydrologic modelling, the issue dealing with integration of uncertainties into flood forecasting remains up-to-date and challenging. In order to develop a framework which could handle these uncertainties and explain their propagation through the model, we propose to explore the potential of graphical models (GMs) and, more precisely, Bayesian Networks (BNs). These networks are Directed Acyclic Graphs (DAGs) in which knowledge of a certain phenomenon is represented by influencing variables. Each node of the graph corresponds to a variable and arcs represent the probabilistic dependencies between these variables. Both the quantification of the strength of these probabilistic dependencies and the computation of inferences are based on Bayes’ theorem. In order to use BNs for the assessment of the flooding risks, the modelling work is divided into two parts. First, identifying all the factors controlling the flood generation. The qualitative explanation of this issue is then reached by establishing the cause and effect relationships between these factors. These underlying relationships are represented in what we call Conditional Probabilities Tables (CPTs). The next step is to estimate these CPTs using information coming from network of sensors, databases and expertise. By using this basic cognitive structure, we will be able to estimate the magnitude of flood risk in a small geographical area with a homogeneous hydrological system. The second part of our work will be dedicated to the estimation of this risk on the scale of a basin. To do so, we will create a spatio-temporal model able to take in consideration both spatial and temporal variability of all factors involved in the flood generation

    Data-driven model for river flood forecasting based on a Bayesian network approach

    Get PDF
    Uncertainty analysis of hydrological models often requires a large number of model runs, which can be time consuming and computationally intensive. In order to reduce the number of runs required for uncertainty prediction, Bayesian networks (BNs) are used to graphically represent conditional probability dependence between the set of variables characterizing a flood event. Bayesian networks (BNs) are relevant due to their capacity to handle uncertainty, combine statistical data and expertise and introduce evidences in real-time flood forecasting. In the present study, a runoff–runoff model is considered. The discharge at a gauging station located is estimated at the outlet of a basin catchment based on discharge measurements at the gauging stations upstream. The BN model shows good performances in estimating the discharges at the basin outlet. Another application of the BN model is to be used as a reverse method. Knowing discharges values at the outlet of the basin, we can propagate back these values through the model to estimate discharges at upstream stations. This turns out to be a practical method to fill the missing data in streamflow records which are critical to the sustainable management of water and the development of hydrological models

    Couplage entre approches mécaniste et systémique pour la modélisation stochastique des phénomènes de crues

    No full text
    Les systèmes de prévision des crues décrivent les transformations pluie-débit en se basant sur des représentations simplifiées. Ces représentations modélisent les processus physiques impliqués avec des descriptions empiriques, ou basées sur des équations de la mécanique classique. Les performances des modèles actuels de prévision des crues sont affectées par différentes incertitudes liées aux approximations et aux paramètres du modèle, aux données d’entrée et aux conditions initiales du bassin versant. La connaissance de ces incertitudes permet aux décideurs de mieux interpréter les prévisions et constitue une aide à la décision lors de la gestion de crue. L’analyse d’incertitudes dans les modèles hydrologiques existants repose le plus souvent sur des simulations de Monte-Carlo (MC). La mise en œuvre de ce type de techniques requiert un grand nombre de simulations et donc un temps de calcul potentiellement important. L'estimation des incertitudes liées à la modélisation hydrologique en temps réel reste donc une gageure. Dans ce projet de thèse, nous développons une méthodologie de prévision des crues basée sur les réseaux Bayésiens (RB). Les RBs sont des graphes acycliques dans lesquels les nœuds correspondent aux variables caractéristiques du système modélisé et les arcs représentent les dépendances probabilistes entre ces variables. La méthodologie présentée propose de construire les RBs à partir des principaux facteurs hydrologiques contrôlant la génération des crues, en utilisant à la fois les observations disponibles de la réponse du système et les équations déterministes décrivant les processus concernés. Elle est conçue pour prendre en compte la variabilité temporelle des différentes variables impliquées. Les dépendances probabilistes entre les variables (paramètres) peuvent être spécifiées en utilisant des données observées, des modèles déterministes existants ou des avis d’experts. Grâce à leurs algorithmes d’inférence, les RBs sont capables de propager rapidement, à travers le graphe, différentes sources d'incertitudes pour estimer leurs effets sur la sortie du modèle (ex. débit d'une rivière). Plusieurs cas d’études sont testés. Le premier cas d’étude concerne le bassin versant du Salat au sud-ouest de la France : un RB est utilisé pour simuler le débit de la rivière à une station donnée à partir des observations de 3 stations hydrométriques localisées en amont. Le modèle présente de bonnes performances pour l'estimation du débit à l’exutoire. Utilisé comme méthode inverse, le modèle affiche également de bons résultats quant à la caractérisation de débits d’une station en amont par propagation d’observations de débit sur des stations en aval. Le deuxième cas d’étude concerne le bassin versant de la Sagelva situé en Norvège, pour lequel un RB est utilisé afin de modéliser l'évolution du contenu en eau de la neige en fonction des données météorologiques disponibles. Les performances du modèle sont conditionnées par les données d’apprentissage utilisées pour spécifier les paramètres du modèle. En l'absence de données d'observation pertinentes pour l’apprentissage, une méthodologie est proposée et testée pour estimer les paramètres du RB à partir d’un modèle déterministe. Le RB résultant peut être utilisé pour effectuer des analyses d’incertitudes sans recours aux simulations de Monte-Carlo. Au regard des résultats enregistrés sur les différents cas d’études, les RBs se révèlent utiles et performants pour une utilisation en support d’un processus d'aide à la décision dans le cadre de la gestion du risque de crue.Flood forecasting describes the rainfall-runoff transformation using simplified representations. These representations are based on either empirical descriptions, or on equations of classical mechanics of the involved physical processes. The performances of the existing flood predictions are affected by several sources of uncertainties coming not only from the approximations involved but also from imperfect knowledge of input data, initial conditions of the river basin, and model parameters. Quantifying these uncertainties enables the decision maker to better interpret the predictions and constitute a valuable decision-making tool for flood risk management. Uncertainty analysis on existing rainfall-runoff models are often performed using Monte Carlo (MC)- simulations. The implementation of this type of techniques requires a large number of simulations and consequently a potentially important calculation time. Therefore, quantifying uncertainties of real-time hydrological models is challenging. In this project, we develop a methodology for flood prediction based on Bayesian networks (BNs). BNs are directed acyclic graphs where the nodes correspond to the variables characterizing the modelled system and the arcs represent the probabilistic dependencies between these variables. The presented methodology suggests to build the RBs from the main hydrological factors controlling the flood generation, using both the available observations of the system response and the deterministic equations describing the processes involved. It is, thus, designed to take into account the time variability of different involved variables. The conditional probability tables (parameters), can be specified using observed data, existing hydrological models or expert opinion. Thanks to their inference algorithms, BN are able to rapidly propagate, through the graph, different sources of uncertainty in order to estimate their effect on the model output (e.g. riverflow). Several case studies are tested. The first case study is the Salat river basin, located in the south-west of France, where a BN is used to simulate the discharge at a given station from the streamflow observations at 3 hydrometric stations located upstream. The model showed good performances estimating the discharge at the outlet. Used in a reverse way, the model showed also satisfactory results when characterising the discharges at an upstream station by propagating back discharge observations of some downstream stations. The second case study is the Sagelva basin, located in Norway, where a BN is used to simulate the accumulation of snow water equivalent (SWE) given available weather data observations. The performances of the model are affected by the learning dataset used to train the BN parameters. In the absence of relevant observation data for learning, a methodology for learning the BN-parameters from deterministic models is proposed and tested. The resulted BN can be used to perform uncertainty analysis without any MC-simulations to be performed in real-time. From these case studies, it appears that BNs are a relevant decisionsupport tool for flood risk management
    corecore