1,164 research outputs found

    Local trace formulae and scaling asymptotics in Toeplitz quantization

    Full text link
    A trace formula for Toeplitz operators was proved by Boutet de Monvel and Guillemin in the setting of general Toeplitz structures. Here we give a local version of this result for a class of Toeplitz operators related to continuous groups of symmetries on quantizable compact symplectic manifolds. The local trace formula involves certain scaling asymptotics along the clean fixed locus of the Hamiltonian flow of the symbol, reminiscent of the scaling asymptotics of the equivariant components of the Szeg\"o kernel along the diagonal

    Scaling asymptotics for quantized Hamiltonian flows

    Full text link
    In recent years, the near diagonal asymptotics of the equivariant components of the Szeg\"{o} kernel of a positive line bundle on a compact symplectic manifold have been studied extensively by many authors. As a natural generalization of this theme, here we consider the local scaling asymptotics of the Toeplitz quantization of a Hamiltonian symplectomorphism, and specifically how they concentrate on the graph of the underlying classical map

    Energy nonequipartition in a sheared granular mixture

    Full text link
    The kinetic granular temperatures of a binary granular mixture in simple shear flow are determined from the Boltzmann kinetic theory by using a Sonine polynomial expansion. The results show that the temperature ratio is clearly different from unity (as may be expected since the system is out of equilibrium) and strongly depends on the restitution coefficients as well as on the parameters of the mixture. The approximate analytical calculations are compared with those obtained from Monte Carlo simulations of the Boltzmann equation showing an excellent agreement over the range of parameters investigated. Finally, the influence of the temperature differences on the rheological properties is also discussed.Comment: 3 figure

    Legendrian Distributions with Applications to Poincar\'e Series

    Full text link
    Let XX be a compact Kahler manifold and LXL\to X a quantizing holomorphic Hermitian line bundle. To immersed Lagrangian submanifolds Λ\Lambda of XX satisfying a Bohr-Sommerfeld condition we associate sequences {Λ,k}k=1\{ |\Lambda, k\rangle \}_{k=1}^\infty, where k\forall k Λ,k|\Lambda, k\rangle is a holomorphic section of LkL^{\otimes k}. The terms in each sequence concentrate on Λ\Lambda, and a sequence itself has a symbol which is a half-form, σ\sigma, on Λ\Lambda. We prove estimates, as kk\to\infty, of the norm squares Λ,kΛ,k\langle \Lambda, k|\Lambda, k\rangle in terms of Λσσ\int_\Lambda \sigma\overline{\sigma}. More generally, we show that if Λ1\Lambda_1 and Λ2\Lambda_2 are two Bohr-Sommerfeld Lagrangian submanifolds intersecting cleanly, the inner products Λ1,kΛ2,k\langle\Lambda_1, k|\Lambda_2, k\rangle have an asymptotic expansion as kk\to\infty, the leading coefficient being an integral over the intersection Λ1Λ2\Lambda_1\cap\Lambda_2. Our construction is a quantization scheme of Bohr-Sommerfeld Lagrangian submanifolds of XX. We prove that the Poincar\'e series on hyperbolic surfaces are a particular case, and therefore obtain estimates of their norms and inner products.Comment: 41 pages, LaTe

    The Generalized Dirichlet to Neumann map for the KdV equation on the half-line

    Full text link
    For the two versions of the KdV equation on the positive half-line an initial-boundary value problem is well posed if one prescribes an initial condition plus either one boundary condition if qtq_{t} and qxxxq_{xxx} have the same sign (KdVI) or two boundary conditions if qtq_{t} and qxxxq_{xxx} have opposite sign (KdVII). Constructing the generalized Dirichlet to Neumann map for the above problems means characterizing the unknown boundary values in terms of the given initial and boundary conditions. For example, if {q(x,0),q(0,t)}\{q(x,0),q(0,t) \} and {q(x,0),q(0,t),qx(0,t)}\{q(x,0),q(0,t),q_{x}(0,t) \} are given for the KdVI and KdVII equations, respectively, then one must construct the unknown boundary values {qx(0,t),qxx(0,t)}\{q_{x}(0,t),q_{xx}(0,t) \} and {qxx(0,t)}\{q_{xx}(0,t) \}, respectively. We show that this can be achieved without solving for q(x,t)q(x,t) by analysing a certain ``global relation'' which couples the given initial and boundary conditions with the unknown boundary values, as well as with the function Φ(t)(t,k)\Phi^{(t)}(t,k), where Φ(t)\Phi^{(t)} satisifies the tt-part of the associated Lax pair evaluated at x=0x=0. Indeed, by employing a Gelfand--Levitan--Marchenko triangular representation for Φ(t)\Phi^{(t)}, the global relation can be solved \emph{explicitly} for the unknown boundary values in terms of the given initial and boundary conditions and the function Φ(t)\Phi^{(t)}. This yields the unknown boundary values in terms of a nonlinear Volterra integral equation.Comment: 21 pages, 3 figure

    The Unified Method: II NLS on the Half-Line with tt-Periodic Boundary Conditions

    Full text link
    Boundary value problems for integrable nonlinear evolution PDEs formulated on the half-line can be analyzed by the unified method introduced by one of the authors and used extensively in the literature. The implementation of this general method to this particular class of problems yields the solution in terms of the unique solution of a matrix Riemann-Hilbert problem formulated in the complex kk-plane (the Fourier plane), which has a jump matrix with explicit (x,t)(x,t)-dependence involving four scalar functions of kk, called spectral functions. Two of these functions depend on the initial data, whereas the other two depend on all boundary values. The most difficult step of the new method is the characterization of the latter two spectral functions in terms of the given initial and boundary data, i.e. the elimination of the unknown boundary values. For certain boundary conditions, called linearizable, this can be achieved simply using algebraic manipulations. Here, we first present an effective characterization of the spectral functions in terms of the given initial and boundary data for the general case of non-linearizable boundary conditions. This characterization is based on the analysis of the so-called global relation and on the introduction of the so-called Gelfand-Levitan-Marchenko representations of the eigenfunctions defining the spectral functions. We then concentrate on the physically significant case of tt-periodic Dirichlet boundary data. After presenting certain heuristic arguments which suggest that the Neumann boundary values become periodic as tt\to\infty, we show that for the case of the NLS with a sine-wave as Dirichlet data, the asymptotics of the Neumann boundary values can be computed explicitly at least up to third order in a perturbative expansion and indeed at least up to this order are asymptotically periodic.Comment: 29 page

    Complex zeros of real ergodic eigenfunctions

    Full text link
    We determine the limit distribution (as λ\lambda \to \infty) of complex zeros for holomorphic continuations \phi_{\lambda}^{\C} to Grauert tubes of real eigenfunctions of the Laplacian on a real analytic compact Riemannian manifold (M,g)(M, g) with ergodic geodesic flow. If {ϕjk}\{\phi_{j_k} \} is an ergodic sequence of eigenfunctions, we prove the weak limit formula \frac{1}{\lambda_j} [Z_{\phi_{j_k}^{\C}}] \to \frac{i}{\pi} \bar{\partial} {\partial} |\xi|_g, where [Z_{\phi_{j_k}^{\C}}] is the current of integration over the complex zeros and where ˉ\bar{\partial} is with respect to the adapted complex structure of Lempert-Sz\"oke and Guillemin-Stenzel.Comment: Added some examples and references. Also added a new Corollary, and corrected some typo

    Quantum ergodicity of C* dynamical systems

    Full text link
    This paper contains a very simple and general proof that eigenfunctions of quantizations of classically ergodic systems become uniformly distributed in phase space. This ergodicity property of eigenfunctions f is shown to follow from a convexity inequality for the invariant states (Af,f). This proof of ergodicity of eigenfunctions simplifies previous proofs (due to A.I. Shnirelman, Colin de Verdiere and the author) and extends the result to the much more general framework of C* dynamical systems.Comment: Only very minor differences with the published versio

    Scattering Theory for Jacobi Operators with Steplike Quasi-Periodic Background

    Full text link
    We develop direct and inverse scattering theory for Jacobi operators with steplike quasi-periodic finite-gap background in the same isospectral class. We derive the corresponding Gel'fand-Levitan-Marchenko equation and find minimal scattering data which determine the perturbed operator uniquely. In addition, we show how the transmission coefficients can be reconstructed from the eigenvalues and one of the reflection coefficients.Comment: 14 page
    corecore