40 research outputs found

    Sex-specific Gene Expression in Flupirtine-Treated Cln3Δex7/8 Mouse Brain

    Get PDF
    Gene expression is a powerful tool to understand structure-function relationships in the nervous system. This study reports global gene expression changes induced by flupirtine in brain of male and female Cln3Δex7/8 mice, exposing potential flupirtine targets at the molecular level. Gene expression analysis of male and female Cln3Δex7/8 mouse brain was determined following oral administration of flupirtine for 14 weeks, using Mouse Genome 430 2.0 array Chips and an Affymetrix platform. Fifty-six genes in males and 79 in females were differentially expressed in flupirtine- versus vehicle-treated Cln3Δex7/8 mouse brain. Flupirtine altered several pathways in Cln3Δex7/8 mouse brain: apoptosis, the complement cascade, NF-kB, and p38α MAPK signaling pathways. Gene-gene network analysis highlighted networks and processes functionally pertinent to flupirtine treatment. These encompassed neurodegeneration, neuro-inflammation, and implicated neurological disorders such as Alzheimer and Parkinson disease. Flupirtine mediates its action in males and females through distinctive actionable targets in the same pathways. This work consolidates the groundwork for considering flupirtine as a treatment option in human CLN3 disease

    Flupirtine Derivatives as Potential Treatment for the Neuronal Ceroid Lipofuscinoses

    Get PDF
    OBJECTIVE: Neuronal Ceroid Lipofuscinoses (NCL) are fatal inherited neurodegenerative diseases with established neuronal cell death and increased ceramide levels in brain, hence, a need for disease-modifying drug candidates, with potential to enhance growth, reduce apoptosis and lower ceramide in neuronal precursor PC12 cells and human NCL cell lines using enhanced flupirtine aromatic carbamate derivatives in vitro. METHODS: Aromatic carbamate derivatives were tested by establishing growth curves under pro-apoptotic conditions and activity evaluated by trypan blue and JC-1 staining, as well as a drop in pro-apoptotic ceramide in neuronal precursor PC12 cells following siRNA knockdown of the RESULTS: Retigabine, the benzyl-derivatized carbamate and an allyl carbamate derivative were neuroprotective in CLN3-defective PC12 cells and rescued CLN1-/CLN2-/CLN3-/CLN6-/CLN8 patient-derived lymphoblasts from diminished growth and accelerated apoptosis. All drugs decreased ceramide in CLN1-/CLN2-/CLN3-/CLN6-/CLN8 patient-derived lymphoblasts. Increased INTERPRETATION: These findings establish that compounds analogous to flupirtine demonstrate anti-apoptotic activity with potential for treatment of NCL disease and use of ceramide as a marker for these diseases

    Exogenous Flupirtine as Potential Treatment for CLN3 Disease

    Get PDF
    CLN3 disease is a fatal neurodegenerative disorder affecting children. Hallmarks include brain atrophy, accelerated neuronal apoptosis, and ceramide elevation. Treatment regimens are supportive, highlighting the importance of novel, disease-modifying drugs. Flupirtine and its new allyl carbamate derivative (compound 6) confer neuroprotective effects in CLN3-deficient cells. This study lays the groundwork for investigating beneficial effects in Cln3Δex7/8 mice. WT/Cln3Δex7/8 mice received flupirtine/compound 6/vehicle for 14 weeks. Short-term effect of flupirtine or compound 6 was tested using a battery of behavioral testing. For flupirtine, gene expression profiles, astrogliosis, and neuronal cell counts were determined. Flupirtine improved neurobehavioral parameters in open field, pole climbing, and Morris water maze tests in Cln3Δex7/8 mice. Several anti-apoptotic markers and ceramide synthesis/degradation enzymes expression was dysregulated in Cln3Δex7/8 mice. Flupirtine reduced astrogliosis in hippocampus and motor cortex of male and female Cln3Δex7/8 mice. Flupirtine increased neuronal cell counts in male mice. The newly synthesized compound 6 showed promising results in open field and pole climbing. In conclusion, flupirtine improved behavioral, neuropathological and biochemical parameters in Cln3Δex7/8 mice, paving the way for potential therapies for CLN3 disease

    Developmental Comparison of Ceramide in Wild-Type and Cln3Δex7/8 Mouse Brains and Sera

    Get PDF
    CLN3 disease is a neurodevelopmental disease leading to early visual failure, motor decline, and death. CLN3 pathogenesis has been linked to dysregulation of ceramide, a key intracellular messenger impacting various biological functions. Ceramide is upregulated in brains of CLN3 patients and activates apoptosis. Ceramide levels over the lifespan of WT and Cln3Δex7/8 mice were measured using the DGK assay. Ceramide subspecies were determined by LC-MS. Ceramide synthesis enzymes and pre- and post-synaptic mRNA expression was measured in Cln3Δex7/8 and normal mouse brains. Neuronal cell death was established by PARP cleavage and Caspases 3/6/9 and cytochrome C mRNA expression in Cln3Δex7/8 and normal mouse brains. In WT mouse, a ceramide peak was noted at 3 weeks of age. The absence of this peak in Cln3Δex7/8 mice might be related to early disease pathogenesis. Increase of ceramide in Cln3Δex7/8 mouse brain at 24 weeks of age precedes neuronal apoptosis. The correlation between serum and brain ceramide in WT mice, and dysregulation of ceramide in serum and brain of Cln3Δex7/8 mice, and the significant increase in ceramide in Cln3Δex7/8 mouse brains and sera argue for use of easily accessible serum ceramide levels to track response to novel therapies in human CLN3 disease

    Large-Scale Phenotyping of an Accurate Genetic Mouse Model of JNCL Identifies Novel Early Pathology Outside the Central Nervous System

    Get PDF
    Cln3Δex7/8 mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3Δex7/8 mice. Homozygous Cln3Δex7/8 mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10–14 weeks of age. Homozygous Cln3Δex7/8 mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12–13 week old homozygous Cln3Δex7/8mice, which were also seen to a lesser extent in heterozygous Cln3Δex7/8 mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15–16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3Δex7/8 mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3Δex7/8 neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3Δex7/8 mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3Δex7/8 mice that merit further study for JNCL biomarker development

    A novel autism-associated UBLCP1 mutation impacts proteasome regulation/activity

    No full text
    Abstract The landscape of autism spectrum disorder (ASD) in Lebanon is unique because of high rates of consanguinity, shared ancestry, and increased remote consanguinity. ASD prevalence in Lebanon is 1 in 68 with a male-to-female ratio of 2:1. This study aims to investigate the impact of an inherited deletion in UBLCP1 (Ubiquitin-Like Domain-Containing CTD Phosphatase 1) on the ubiquitin-proteasome system (UPS) and proteolysis. Whole exome sequencing in a Lebanese family with ASD without pathogenic copy number variations (CNVs) uncovered a deletion in UBLCP1. Functional evaluation of the identified variant is described in fibroblasts from the affected. The deletion in UBLCP1 exon 10 (g.158,710,261CAAAG > C) generates a premature stop codon interrupting the phosphatase domain and is predicted as pathogenic. It is absent from databases of normal variation worldwide and in Lebanon. Wild-type UBLCP1 is widely expressed in mouse brains. The mutation results in decreased UBLCP1 protein expression in patient-derived fibroblasts from the autistic patient compared to controls. The truncated UBLCP1 protein results in increased proteasome activity decreased ubiquitinated protein levels, and downregulation in expression of other proteasome subunits in samples from the affected compared to controls. Inhibition of the proteasome by using MG132 in proband cells reverses alterations in gene expression due to the restoration of protein levels of the common transcription factor, NRF1. Finally, treatment with gentamicin, which promotes premature termination codon read-through, restores UBLCP1 expression and function. Discovery of an ASD-linked mutation in UBLCP1 leading to overactivation of cell proteolysis is reported. This, in turn, leads to dysregulation of proteasome subunit transcript levels as a compensatory response

    Sex differences in gene expression with galactosylceramide treatment in Cln3Δex7/8 mice.

    No full text
    BackgroundCLN3 disease is caused by mutations in the CLN3 gene. The purpose of this study is to discern global expression patterns reflecting therapeutic targets in CLN3 disease.MethodsDifferential gene expression in vehicle-exposed mouse brain was determined after intraperitoneal vehicle/Galactosylceramide (GalCer) injections for 40 weeks with GeneChip Mouse Genome 430 2.0 arrays.ResultsAnalysis identified 66 genes in male and 30 in female brains differentially expressed in GalCer-treated versus vehicle-exposed Cln3Δex7/8 mice. Gene ontology revealed aberrations of biological function including developmental, cellular, and behavioral processes. GalCer treatment altered pathways of long-term potentiation/depression, estrogen signaling, synaptic vesicle cycle, ErbB signaling, and prion diseases in males, but prolactin signaling, selenium compound metabolism and steroid biosynthesis in females. Gene-gene network analysis highlighted networks functionally pertinent to GalCer treatment encompassing motor dysfunction, neurodegeneration, memory disorder, inflammation and astrogliosis in males, and, cataracts, inflammation, astrogliosis, and anxiety in females.ConclusionsThis study sheds light on global expression patterns following GalCer treatment of Cln3Δex7/8 mice. Understanding molecular effects of GalCer on mouse brain gene expression, paves the way for personalized strategies for treating this debilitating disease in humans
    corecore