111 research outputs found

    An analog technique for the measurement of damping from transient decay signals

    Get PDF
    A tracking filter that includes an output that is logarithmically proportional to the amplitude of the filtered signal is used to measure the damping exponent of a transient decay. This method is analogous to the digital technique referred to as the moving-block or peak-plot method. The method is simple to use and quite accurate, avoids the numerical computations associated with similar digital techniques, but is constrained by the poor time-domain response characteristics of commercial tracking filters presently available

    Experimentally determined flutter from two- and three-bladed model bearingless rotors in hover

    Get PDF
    A series of experiments was performed on a 1.8-m-diam model rotor in hover for the principal purpose of investigating the lead-lag stability of isolated bearingless rotors. Incidental to those tests, at least three types of pitch-flap flutter were encountered. Type 1 flutter occurred approximately at the second flap-mode frequency on both two-and three-bladed rotors for both small and large pitch angles and appeared to be a classic pitch-flap flutter. Type 2 flutter showed mostly torsional motion and was seen on both two- and three-bladed rotors. Type 3 flutter was a regressing flap flutter that occurred for only the three-bladed rotor configurations and appears to be a wake excited flutter. Although flutter occurred on a number of different configurations, no rotor parameters were identified that were clearly stabilizing or destabilizing

    Hingeless helicopter rotor with improved stability

    Get PDF
    Improved stability was provided in a hingeless helicopter rotor by inclining the principal elastic flexural axes and coupling pitching of the rotor blade with the lead-lag bending of the blade. The primary elastic flex axes were inclined by constructing the blade of materials that display non-uniform stiffness, and the specification described various cross section distributions and the resulting inclined flex axes. Arrangements for varying the pitch of the rotor blade in a predetermined relationship with lead-lag bending of the blade, i.e., bending of the blade in a plane parallel to its plane of rotation were constructed

    New design of hingeless helicopter rotor improves stability

    Get PDF
    Cantilever blades are attached directly to rotor hub, thereby substantially reducing cost and complexity and increasing reliability of helicopter rotor. Combination of structural flap-lag coupling and pitch-lag coupling provides damping of 6 to 10%, depending on magnitude of coupling parameters

    Control of rotorcraft retreating blade stall using air-jet vortex generators

    Get PDF
    A series of low-speed wind tunnel tests were carried out on an oscillating airfoil fitted with two rows of air-jet vortex generators (AJVGs). The airfoil used had an RAE 9645 section and the two spanwise arrays of AJVGs were located at x/c=0.12 and 0.62. The devices and their distribution were chosen to assess their ability to modify/control dynamic stall; the goal being to enhance the aerodynamic performance of helicopter rotors on the retreating blade side of the disc. The model was pitched about the quarter chord with a reduced frequency (k) of 0.1 in a sinusoidal motion defined by a=15o+10sin_ t. The measured data indicate that, for continuous blowing from the front row of AJVGs with a momentum blowing coefficient (C μ) greater than 0.008, modifications to the stalling process are encouraging. In particular, the pitching moment behavior exhibits delayed stall and there is a marked reduction in the normal force hysteresis

    Optimizing tuning masses for helicopter rotor blade vibration reduction including computed airloads and comparison with test data

    Get PDF
    The development and validation of an optimization procedure to systematically place tuning masses along a rotor blade span to minimize vibratory loads are described. The masses and their corresponding locations are the design variables that are manipulated to reduce the harmonics of hub shear for a four-bladed rotor system without adding a large mass penalty. The procedure incorporates a comprehensive helicopter analysis to calculate the airloads. Predicting changes in airloads due to changes in design variables is an important feature of this research. The procedure was applied to a one-sixth, Mach-scaled rotor blade model to place three masses and then again to place six masses. In both cases the added mass was able to achieve significant reductions in the hub shear. In addition, the procedure was applied to place a single mass of fixed value on a blade model to reduce the hub shear for three flight conditions. The analytical results were compared to experimental data from a wind tunnel test performed in the Langley Transonic Dynamics Tunnel. The correlation of the mass location was good and the trend of the mass location with respect to flight speed was predicted fairly well. However, it was noted that the analysis was not entirely successful at predicting the absolute magnitudes of the fixed system loads

    Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa

    Get PDF
    There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5-6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, 'place provisioning', longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS 3. Changing paleoenvironments explain some, but not all temporal technological variability at PP5-6.Social Science and Humanities Research Council of Canada; NORAM; American-Scandinavian Foundation; Fundacao para a Ciencia e Tecnologia [SFRH/BPD/73598/2010]; IGERT [DGE 0801634]; Hyde Family Foundations; Institute of Human Origins; National Science Foundation [BCS-9912465, BCS-0130713, BCS-0524087, BCS-1138073]; John Templeton Foundation to the Institute of Human Origins at Arizona State Universit

    Genome-wide association analyses of symptom severity among clozapine-treated patients with schizophrenia spectrum disorders

    Get PDF
    Clozapine is the most effective antipsychotic for patients with treatment-resistant schizophrenia. However, response is highly variable and possible genetic underpinnings of this variability remain unknown. Here, we performed polygenic risk score (PRS) analyses to estimate the amount of variance in symptom severity among clozapine-treated patients explained by PRSs (R2) and examined the association between symptom severity and genotype-predicted CYP1A2, CYP2D6, and CYP2C19 enzyme activity. Genome-wide association (GWA) analyses were performed to explore loci associated with symptom severity. A multicenter cohort of 804 patients (after quality control N = 684) with schizophrenia spectrum disorder treated with clozapine were cross-sectionally assessed using the Positive and Negative Syndrome Scale and/or the Clinical Global Impression-Severity (CGI-S) scale. GWA and PRS regression analyses were conducted. Genotype-predicted CYP1A2, CYP2D6, and CYP2C19 enzyme activities were calculated. Schizophrenia-PRS was most significantly and positively associated with low symptom severity (p = 1.03 × 10−3; R2 = 1.85). Cross-disorder-PRS was also positively associated with lower CGI-S score (p = 0.01; R2 = 0.81). Compared to the lowest tertile, patients in the highest schizophrenia-PRS tertile had 1.94 times (p = 6.84×10−4) increased probability of low symptom severity. Higher genotype-predicted CYP2C19 enzyme activity was independently associated with lower symptom severity (p = 8.44×10−3). While no locus surpassed the genome-wide significance threshold, rs1923778 within NFIB showed a suggestive association (p = 3.78×10−7) with symptom severity. We show that high schizophrenia-PRS and genotype-predicted CYP2C19 enzyme activity are independently associated with lower symptom severity among individuals treated with clozapine. Our findings open avenues for future pharmacogenomic projects investigating the potential of PRS and genotype-predicted CYP-activity in schizophrenia
    • 

    corecore