37 research outputs found

    Preliminary numerical analysis of the seismic response of steel frames with masonry infills retrofitted by buckling-restrained braces

    Get PDF
    Existing steel moment-resisting frames in several seismic regions worldwide are often characterised by high vulnerability to earthquakes due to insufficient local and/or global ductility. Nowadays, it is of paramount importance to assess their response under strong motions and provide cost-effective retrofitting strategies. Amongst others, the seismic behaviour of these frames is often strongly affected by the presence of masonry infills which, from one side, if adequately distributed, beneficially contribute to the seismic resistance of the structure providing stiffness and strength to the frame, from the other side often experience a brittle behaviour and are very vulnerable to seismic actions. To this end, the H2020-INFRAIA-SERA project HITFRAMES (i.e., HybrId Testing of an Existing Steel Frame with Infills under Multiple EarthquakeS) experimentally evaluated a case study building representative of non-seismically designed European steel frames with masonry infills and investigated a possible retrofit strategy. This paper takes advantage of the experimental results of the HITFRAMES project to calibrate numerical models in OpenSees of a case study building which is analysed as bare, infilled and retrofitted frame with buckling-restrained braces (BRBs). The impact of masonry infills and BRB-retrofit is investigated by comparing the response of models with different configurations. The numerical results provide some insights on the ability of BRB-retrofit option in protecting not only the steel frames from experiencing critical damage during earthquakes but also the masonry infills and on the importance of using appropriate models for the masonry infills in the assessment procedures

    Numerical modelling of masonry infill walls in existing steel frames

    Get PDF
    It is now widely recognised that masonry infill plays an essential role in the seismic behaviour of existing steel buildings; however, there is still a lack of clear guidance on the modelling of masonry infill in the current Eurocode 8-Part 3. Several methods for the numerical modelling of masonry infills have been proposed in literature over the past few decades, which either adopt a detailed approach (micro-model) or a simplified approach (macromodel). In the former case, bricks are individually modelled, taking into account the brickmortar cohesive interface, which is able to provide detailed insights of the behaviour of masonry infills and the frame-wall interaction but usually at a high computational cost. On the other hand, a simplified model can be easily built within finite element software, most of which replace the infill wall panel with one or more equivalent struts in the diagonal direction. It has been demonstrated that the strut models can simulate RC infilled structures’ global response with acceptable accuracy; however, there are still no adequate recommendations for their modelling within steel frames. Besides, these models are generally incapable of capturing the interactions between the infills and the frame members. To this end, the present paper numerically investigates an Abaqus macro-model of the infilled steel frame, which was experimentally tested as part of the recent SERA HITFRAMES project. The preliminary re-sults shows that the different detailing of steel frames could lead to different damage patterns in the infill walls when compared to RC frames. In particular, instead of a single diagonal strut, at most three struts were observed in this study. The results also suggested that the number and geometry of struts could change with increasing displacement demands, hence it might not be appropriate to use the same strut model for infill walls on different floors

    Dynamic response of existing steel frames with masonry infills under multiple earthquakes

    Get PDF
    Existing steel moment-resisting frames in several seismic regions worldwide are often characterised by high vulnerability to earthquakes due to insufficient local and/or global ductility. Therefore, it is of paramount importance to assess their response under strong motions and provide cost-effective retrofitting remedies. However, the current code-based assessment framework utilized in Europe for assessing existing structures is inadequate and requires improvement, especially to account for the contribution of masonry infills as they significantly influence the seismic response of steel buildings. To this end, the H2020-INFRAIA-SERA project HITFRAMES (i.e., Hybrid Testing of an Existing Steel Frame with Infills under Multiple Earthquakes) aims at experimental evaluation of a case study building representative of non-seismically designed European steel frames. This paper presents the dynamic response analyses of the case study building and serves as a theoretical prediction of the experimental results for HTTFRAMES. The case study building is analysed as a bare, an infilled and a retrofitted frame with buckling restrained braces (BRBs), respectively. It is subjected to the natural seismic sequence recorded during the 2016-2017 Central Italy earthquakes. The modal properties of the case study building are determined first, followed by the investigation of its non-linear dynamic response. The dynamic tests are performed with the earthquake records scaled to different intensity levels to simulate the structural performance under different limit states according to Eurocode 8-Part 3. The impact of masonry infills and BRB-retrofit is also investigated by comparing the response of models with different configurations. It can be concluded that appropriately-designed BRBs are effective in protecting steel frames from experiencing critical damage during earthquakes and reducing significantly the transient and residual drift

    Strengthening of short splices in RC beams using Post-Tensioned Metal Straps

    Get PDF
    This paper investigates the effectiveness of a novel and cost-effective strengthening technique using Post-Tensioned Metal Straps (PTMS) at enhancing the bond behaviour of short lap spliced steel bars in reinforced concrete (RC) beams. Twelve RC beams with a short lap splice length of 10d b (d b = bar diameter) at the midspan zone were tested in flexure to examine the bond splitting failure. The effect of confinement (no confinement, internal steel stirrups or external PTMS), bar diameter and concrete cover were examined. The results show that, whilst unconfined control beams failed prematurely due to cover splitting, the use of PTMS confinement enhanced the bond strength of the spliced bars by up to 58 % and resulted in a less brittle behaviour. Based on the test results, a new analytical model is proposed to predict the additional bond strength provided by PTMS confinement. The model should prove useful in the strengthening design of substandard lap spliced RC elements

    Concrete or FRP Jacketing of Columns with Lap Splices for Seismic Rehabilitation

    No full text

    Intercontinental Hybrid Simulation for the Assessment of a Three-Span R/C Highway Overpass

    No full text
    This paper presents hybrid simulations of a three-span R/C bridge among EU, US, and Canada. The tests involved partners located on both sides of the Atlantic with each one assigned a numerical or a physical module of the substructured bridge. Despite the network latency in linking remote sites located on the two sides of the Atlantic the intercontinental hybrid simulation was accomplished and repeated successfully, highlighting the efficiency, and repetitiveness of the approach. Adaptations, challenges, and limitations are discussed, focusing on the implications of network communication latency, the insensitivity of the sub-structuring arrangement, and the accuracy of the results obtained

    Evaluation of Shear Strength of RC Columns Strengthened by Concrete Jacketing

    No full text

    Numerical Modelling of Masonry Infill Walls in Existing Steel Frames Against Experimental Results

    No full text
    The presence of masonry infills may significantly affect the seismic behaviour of existing steel moment-resisting frames, characterised by low lateral force resistance and inadequate energy dissipation capacity due to the lack of seismic detailing. Masonry infills may cause variation of internal force distribution along beams and columns, resulting in large local seismic demands at beam-column joints and consequently leading to soft-storey mechanisms. Several numerical models have been developed to account for the effects of masonry infills, among which the equivalent strut models were most widely used. However, it has been argued that despite its ability to capture the global response of structures, the single-strut model may not be adequate to correctly simulate the internal forces distributions in steel members. To this end, the present study investigates modelling strategies of infilled steel frames using both single- and three-strut models. The results from different modelling approaches are compared among them and with experimental tests, providing insights on the influence of the modelling strategies both at global and local levels
    corecore