21 research outputs found

    PRODIGE -- Envelope to Disk with NOEMA II. Small-scale temperature structure and a streamer feeding the SVS13A protobinary using CH3CN and DCN

    Full text link
    Aims. We present high sensitivity and high-spectral resolution NOEMA observations of the Class 0/I binary system SVS13A, composed of the low-mass protostars VLA4A and VLA4B with a separation of ~90 au. VLA4A is undergoing an accretion burst that enriches the chemistry of the surrounding gas. This gives us an excellent opportunity to probe the chemical and physical conditions as well as the accretion process. Methods. We observe the (12K-11K) lines of CH3CN and CH313CN, the DCN (3-2) line, and the C18O (2-1) line toward SVS13A using NOEMA. Results. We find complex line profiles at disk scales which cannot be explained by a single component or pure Keplerian motion. By adopting two velocity components to model the complex line profiles, we find that the temperatures and densities are significantly different between these two components. This suggests that the physical conditions of the emitting gas traced via CH3CN can change dramatically within the circumbinary disk. In addition, combining our observations of DCN (3-2) with previous ALMA high-angular-resolution observations, we find that the binary system (or VLA4A) might be fed by an infalling streamer from envelope scales (~700 au). If this is the case, this streamer contributes to the accretion of material onto the system with a rate of at least 1.4x10-6 Msun yr-1. Conclusions. We conclude that the CH3CN emission in SVS13A traces hot gas from a complex structure. This complexity might be affected by a streamer that is possibly infalling and funneling material into the central region.Comment: 20 pages, 19 figures, accepted to A&

    PRODIGE -- Envelope to disk with NOEMA I. A 3000 au streamer feeding a Class I protostar

    Full text link
    Context. In the past few years, there has been a rise in the detection of streamers, asymmetric flows of material directed toward the protostellar disk with material from outside the star's natal core. It is unclear how they affect the process of mass accretion, in particular beyond the Class 0 phase. Aims. We investigate the gas kinematics around Per-emb-50, a Class I source in the crowded star-forming region NGC 1333. Our goal is to study how the mass infall proceeds from envelope to disk scales in this source. Results. We discover a streamer delivering material toward Per-emb-50 in H2_2CO and C18^{18}O emission. The streamer's emission can be well described by the analytic solutions for an infalling parcel of gas along a streamline with conserved angular momentum, both in the image plane and along the line of sight velocities. The streamer has a mean infall rate of 1.3×10−61.3 \times 10^{ -6} M⊙_{ \odot} yr−1^{ -1}, 5−105 -10 times higher than the current accretion rate of the protostar. SO and SO2_2 emission reveal asymmetric infall motions in the inner envelope, additional to the streamer around Per-emb-50. Furthermore, the presence of SO2_2 could mark the impact zone of the infalling material. Conclusions. The streamer delivers sufficient mass to sustain the protostellar accretion rate and might produce an accretion burst, which would explain the protostar's high luminosity with respect to other Class I sources. Our results highlight the importance of late infall for protostellar evolution: streamers might provide a significant amount of mass for stellar accretion after the Class 0 phase.Comment: 20 pages, 14 figures, accepted for publication in A&

    Focused wave interactions with floating structures: A blind comparative study

    Get PDF
    The paper presents results from the Collaborative Computational Project in Wave Structure Interaction (CCP-WSI) Blind Test Series 2. Without prior access to the physical data, participants, with numerical methods ranging from low-fidelity linear models to fully non-linear Navier-Stokes (NS) solvers, simulate the interaction between focused wave events and two separate, taut-moored, floating structures: a hemispherical-bottomed cylinder and a cylinder with a moonpool. The 'blind' numerical predictions for heave, surge, pitch and mooring load, are compared against physical measurements. Dynamic time warping is used to quantify the predictive capability of participating methods. In general, NS solvers and hybrid methods give more accurate predictions; however, heave amplitude is predicted reasonably well by all methods; and a WEC-Sim implementation, with CFD-informed viscous terms, demonstrates comparable predictive capability to even the stronger NS solvers. Large variations in the solutions are observed (even among similar methods), highlighting a need for standardisation in the numerical modelling of WSI problems

    SPARKS II.: Complex organic molecules in accretion shocks around a hot core precursor

    No full text
    Classical hot cores are rich in molecular emission, and they show a high abundance of complex organic molecules (COMs). The emergence of molecular complexity is poorly constrained in the early evolution of hot cores. Using the Atacama Large Millimeter Array we put observational constraints on the physical location of COMs in a high-mass protostellar envelope associated with the G328.2551-0.5321 clump. The protostar is single down to ~400au scales and we resolve the emission region of COMs. Using thermodynamic equilibrium modelling of the available 7.5 GHz bandwidth around ~345 GHz, we detect emission from 10 COMs, and identify a line of deuterated water (HDO). The most extended emission originates from methanol, methyl formate and formamide. Together with HDO, these molecules are found to be associated with both the accretion shocks and the inner envelope, for which we estimate a moderate temperature of Tkin∼T_{\rm kin}\sim110 K. Our findings reveal a significant difference in the distribution of COMs. O-bearing COMs, such as ethanol, acetone, and ethylene glycol are almost exclusively found and show a higher abundance towards the accretion shocks with Tkin∼T_{\rm kin}\sim180 K. Whereas N-bearing COMs with a CN group, such as vinyl and ethyl cyanide peak on the central position, thus the protostar and the accretion disk. This is the first observational evidence for a large column density of COMs seen towards accretion shocks at the centrifugal barrier at the inner envelope. Since the molecular composition is dominated by that of the accretion shocks and the radiatively heated hot inner region is very compact, we propose this source to be a precursor to a classical, radiatively heated hot core

    Sulphur-rich cold gas around the hot core precursor G328.2551-0.5321. An APEX unbiased spectral survey of the 2 mm, 1.2 mm, and 0.8 mm atmospheric windows

    Full text link
    During star formation, the dense gas undergoes significant chemical evolution leading to the emergence of a rich variety of molecules associated with hot cores and hot corinos. The physical and chemical conditions are poorly constrained; the early phases of emerging hot cores in particular represent an unexplored territory. We provide here a full molecular inventory of a massive protostellar core that is proposed to be a precursor of a hot core. We performed an unbiased spectral survey towards the hot core precursor associated with clump G328.2551-0.5321 between 159GHz and 374GHz. To identify the spectral lines, we used rotational diagrams and radiative transfer modelling assuming LTE. We detected 39 species and 26 isotopologues, and were able to distinguish a warm and compact inner region, a colder more extended envelope, and the kinematic signatures of the accretion shocks that have previously been observed with ALMA. We associate most of the emission of the small molecules with the cold gas, while the molecular emission of the warm gas is enriched by complex organic molecules (COMs). We find a high abundance of S-bearing molecules in the cold gas phase suggesting a low sulphur depletion, with a factor of > 1%. We identify nine COMs in the warm gas, four in the cold gas, and four towards the accretion shocks. The high abundances of S-bearing species originating from the undisturbed gas may suggest a contribution from shocked gas at the outflow cavity walls. The molecular composition of the warm gas is similar to that of both hot cores and hot corinos, but the molecular abundances are closer to the values found towards hot corinos than to values found towards hot cores. Considering the compactness of the warm region and its moderate temperature, we suggest that thermal desorption has not been completed towards this object yet, representing an early phase of the emergence of hot cores.Comment: 68 pages, 59 figures. Accepted by A&A after refereeing and language corrections. Abstract abbreviate
    corecore