1,047 research outputs found

    SU(3) Breaking in Hyperon Beta Decays: a Prediction for Xi^0 -> Sigma^+ e nu-bar

    Full text link
    On the basis of a previous analysis of hyperon semi-leptonic decay data, a prediction is presented for g_1/f_1 in the Xi^0 -> Sigma^+ e nu-bar beta-decay. The analysis takes into account SU(3) breaking in this sector via the inclusion of mass-driven corrections. A rather precise measurement of the above channel by the KTeV experiment at Fermilab will shortly be available. Since the dependence on the SU(3) parameters, F and D, is identical to that of the neutron beta-decay, such a measurement will provide a rather stringent test of SU(3) and the models used to describe its violation in these decays. The prediction given here for the above decay is g_1/f_1=1.17, which leads to a rate of 0.80 x 10^6 s^-1 and thus a branching fraction of 2.3 x 10^-4.Comment: LaTeX, 7 pages, uses acromake, cite and topcapt packages. Non-printing extended ascii characters replaced plus minor correction

    Isospin Breaking in Neutron β\beta-decay and SU(3) Violation in Semi-leptonic Hyperon Decays

    Get PDF
    Present precision measurements of the neutron life time lead to a CKM matrix element Vud|V_{ud}| which is three standard deviations off the value inferred from heavy quark decays etc. We investigate the possibility whether isospin-breaking effects in the neutron-to-proton vector current transition matrix element =1+δgV=1+\delta g_V could eventually close this gap. For that we calculate in chiral perturbation theory the effect of pion and kaon loops on the matrix element taking into account the mass differences of the charged and neutral mesons. We find a negligibly small isospin-breaking effect of δgV4105\delta g_V \simeq -4 \cdot 10^{-5}. The crucial quantity in the analysis of neutron beta-decay precision measurements is thus the radiative correction term ΔR\Delta_R. Furthermore, we calculate in heavy baryon chiral perturbation theory the SU(3) breaking effects on the vector transition charges of weak semi-leptonic hyperon decays. We find for these quantities channel-dependent relative deviations from the SU(3) limit which range from -10% to +1+1%.Comment: 6 pages, 1 figure, to be published in Physical Review C (brief report

    Veneziano Ghost Versus Isospin Breaking

    Full text link
    It is argued that an account for the Veneziano ghost pole, appearing in resolving the U(1) problem, is necessary for understanding an isospin violation in the πηη \pi - \eta - \eta' system. By virtue of a perturbative expansion around the SU(2)V SU(2)_{V} ( mu=md m_{u} = m_{d} ) symmetric Veneziano solution, we find that the ghost considerably suppresses isospin breaking gluon and s-quark matrix elements. We speculate further on a few cases where the proposed mechanism can play an essential role. We discuss the isospin violation in meson-nucleon couplings and its relevance to the problem of charge asymmetric nuclear forces and possible breaking of the Bjorken sum rule. It is shown that the ghost pole could yield the isospin violation of order 2 \% for the πN \pi N couplings and 20 \% for the Bjorken sum rule.Comment: 16 pages , Preprint TAUP-2127-9

    Coherent broadband light source for parallel optical coherence tomography

    Get PDF
    A Ti:sapphire planar waveguide is rib structured by Ar ion milling to provide parallel channel waveguides. By coupling high-power pump light through a microlens array into the waveguides, a novel broadband luminescent parallel emitter is demonstrated as a light source for parallel optical coherence tomography using smart detector arrays

    Critical Analysis of Baryon Masses and Sigma-Terms in Heavy Baryon Chiral Perturbation Theory

    Full text link
    We present an analysis of the octet baryon masses and the πN\pi N and KNKN σ\sigma--terms in the framework of heavy baryon chiral perturbation theory. At next-to-leading order, O(q3){\cal O}(q^3), knowledge of the baryon masses and σπN(0)\sigma_{\pi N}(0) allows to determine the three corresponding finite low--energy constants and to predict the the two KNKN σ\sigma--terms σKN(1,2)(0)\sigma^{(1,2)}_{KN} (0). We also include the spin-3/2 decuplet in the effective theory. The presence of the non--vanishing energy scale due to the octet--decuplet splitting shifts the average octet baryon mass by an infinite amount and leads to infinite renormalizations of the low--energy constants. The first observable effect of the decuplet intermediate states to the baryon masses starts out at order q4q^4. We argue that it is not sufficient to retain only these but no other higher order terms to achieve a consistent description of the three--flavor scalar sector of baryon CHPT. In addition, we critically discuss an SU(2) result which allows to explain the large shift of σπN(2Mπ2)σπN(0)\sigma_{\pi N}(2M_\pi^2) - \sigma_{\pi N}(0) via intermediate Δ(1232)\Delta (1232) states.Comment: 18 pp, TeX, BUTP-93/05 and CRN-93-0

    Experiments to Find or Exclude a Long-Lived, Light Gluino

    Get PDF
    Gluinos in the mass range ~1 1/2 - 3 1/2 GeV are absolutely excluded. Lighter gluinos are allowed, except for certain ranges of lifetime. Only small parts of the mass-lifetime parameter space are excluded for larger masses unless the lifetime is shorter than ~ 2 10^{-11} (m_{gluino}/ GeV) sec. Refined mass and lifetime estimates for R-hadrons are given, present direct and indirect experimental constraints are reviewed, and experiments to find or definitively exclude these possibilities are suggested.Comment: 27 pp, latex with 1 uufiled figure, RU-94-35. New version amplifies discussion of some points and corresponds to version for Phys. Rev.

    Right Handed Weak Currents in Sum Rules for Axialvector Constant Renormalization

    Get PDF
    The recent experimental results on deep inelastic polarized lepton scattering off proton, deuteron and 3^{3}He together with polari% zed neutron β\beta-decay data are analyzed. It is shown that the problem of Ellis-Jaffe and Bjorken sum rules deficiency and the neutron paradox could be solved simultaneously by assuming the small right handed current (RHC) admixture in the weak interaction Lagrangian. The possible RHC impact on pion-nucleon σ\sigma-term and Gamow-Teller sum rule for (p,n)(p,n) nuclear reactions is pointed out.Comment: to be published in Phys. Rev. Lett. LaTeX, 8 pages, 21 k
    corecore