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Abstract − This paper presents a microprocessor-
based distributed system architecture designed to 
interconnect piezoelectric resonant sensors to a 
measurement and control unit.  

Previously, a multielectrode (ME) temperature 
compensated force sensor was designed and 
prototyped, featuring thickness-shear dual mode 
operation driven by several pairs of electrodes, as seen 
in published article [1]. The starting idea to design the 
resonator was to optimize a particular electrodes shape 
that could allow dual mode excitation by electrically 
isolated electronic oscillators. This approach greatly 
simplified the electronics, knowing that dual mode 
operation with classical electrodes requires elaborate 
schematics for signal mixing and filtering to finally 
discriminate the vibrating mode frequencies. In our 
case, since the signals are already separated, only a 
minimal attention was paid to design of electronic 
oscillators, the rest of the work being devoted to 
frequency counting and information processing.  

Quartz thermosensitive (QT) resonators is a family of 
miniaturized thickness-shear resonators developed 
under a joint European project collaboration called 
QxSens [7],[8]. These sensors offer a large 
measurement range down to cryogenic temperatures, 
providing at the same time resolutions below the 
miliKelvin. 

The present paper continues the work and focuses 
over the electronic device necessary for extracting the 
useful output data from raw frequency values provided 
by these two types of sensors. 

1 INTRODUCTION ON MULTIELECTRODE (ME) 
RESONATOR FEATURES 

The force sensitive element is a plano-convex disk-
shaped thickness-shear resonator manufactured in 
quartz. The diameter of the plate is 13.2 mm, the 
curvature radius of the convex side is 300mm while 

the thickness of the plate is 0.7 mm. The quartz 
crystal had an SC-cut [2].  Electrodes were made by 
vacuum deposition of gold over a chrome layer 
followed by photolithography. Resulted plates were 
tested extensively [1] under different force and 
temperature conditions. The design of electrodes is 
not a subject of the paper, although it should be 
stressed out that a good concordance was found 
between analytical simulation of vibrating amplitude 
distribution and experimental X-rays topographies 
[1,6] performed on the real samples. 

One vibrating mode (so-called C-mode) is mainly 
sensitive both to a compressional diametral force and 
to the temperature, while the other mode (B-mode) is 
about fifty times more sensitive to the temperature 
and almost insensitive to the applied force.  

Figure 1-2 explains the geometry of the resonator 
plate while figures 3.a,b,c shows several pictures of 
the first series of prototypes.   

 

 
Figure 1. SC-Cut in quartz. (XYZ) represents 

crystalline system of axis and (X1X2X3) is the cut 
coordinates system 

 



 
 

Figure 2. SC-Cut resonator geometry.     (X1’X2’X3’) 
is the local mode system of axis turned by the angle 
ψn w.r.t. (X1X2X3). The external force  F  is applied 

at ψa  azimuth angle.  
 
The mark in Figure 3 is made during 

manufacturing of plate for orientation purposes and 
represents the projection of the crystallographic axis 
–X over the (X1X3) plane of the cut. The value of the 
turning angle is 130.   

 

      
 

Figure 3.a) Plate completely metalized by vacuum 
deposition 

b) Plate after UV photolithography 
c) Resonator with electrical connections under 

compressional force setup. 

 
  

Figure 3.d) Future project of a complete transducer 
encapsulating resonator and relied electronics 

 
The possibility to integrate the ME resonator and 
relied electronics (oscillators plus digital conversion 
unit) has been studied and is in feasible, as seen in 
figure 3.d. 

2 MULTIELECTRODE TRANSFER EQUATIONS SET 

This part discusses electrical equivalent schematic 
and motional parameters values necessary to design 
the electronic oscillators. Afterwards it presents 
experimental results from testing the first prototypes 
and establishes the method to compute the force and 
temperature based on the two resonant frequencies of 
B and C modes. 

2.1 Equivalent electrical schematic 

The first series of samples were tested in a passive PI 
network, in order to calculate the equivalent 
electrical parameters, according to the schematic 
shown in figure 4.  
 
Quality factors Q of the resonators were found to be 
equal with 211037 and 120800 respectively. 
Motional resistances R1 range around 20…30 kΩ, 
inductances L1 around 55…90 H, and equivalent 
dynamic capacitances C1 equal about 0,005 fF as 
seen in the table below. 
 
Pairs of electrodes are named according to paper [1] 
notation. Static parallel capacitance Co of the pair 
P2+P4 intended to work for the C-mode is 3,1 pF 
and the value of static capacitance of the B-mode 
pair P1+P3 is equal to 2,7 pF. 



 
Figure 4. Electrical equivalent schematic – electrodes 

pair P2+P4 [1]. 

 
Figure 4. Frequency analysis simulation. 

 

 
Figure 5. Experimental frequency spectrum 

 
The operating frequency for this pair of electrodes 
(P2+P4) is marked by a circle in figure 5. The rest of 
the modes are unwanted ones and can be further 
suppressed by the electronic oscillator.  

2.2 Frequency to temperature experimental 
characteristics 

Frequencies – temperature curves of the resonators 
were investigated under a controlled oven between  –
15 0C and +90 0C. However, experiments can be 
performed over a wider temperature range. As 
known, mode B offers large temperature sensitivity, 
with a fairly linear slope. The C-mode is temperature 
compensated, exhibiting a cubic frequency to 
temperature curve. We fitted the experimental data 
under different  polynomials of various orders, and 
finally we came to the conclusion that for the 
interval –100C …+800C the optimum fit of the B 
mode is made with by a 2nd order polynomial, while 
the C-mode is described by a 3rd order polynomial. 
Larger polynomial orders do not improve 

significantly the correlation coefficient SD, but only 
complicate the formulas by adding extra terms 
difficult to handle by 8-bit microcontroller systems 
for example. 

Obs. fs [Hz] R1 
[ohm] 

L1    
[H] 

C1      
[F] 

C0 
[pF]

Mod (C,3,0,1)  
Electr. P2+P4 
in antiparallel 

7294798 20619 87,1 4,6 E-18 3,1

Mod (B,3,0,1)  
Electr. P2+P4 
in antiparallel 

7955660 22523 70,2 6,8 E-18 3,1

Mod (C,3,1,0)  
Electr. P1+P3 
in antiparallel 

7291262 38749 58,2 8,2 E-18 2,7

Mod (B,3,1,0)  
Electr. P1+P3 
in antiparallel 

7972292 28324 68,3 5,8 E-18 2,7

 
Figure 6. Frequency – temperature characteristic     fB 

= f (t) of B-mode. 
 
Mode (B,3,1,0). Polynomial Regression for CFTM2B: 
Y = A + B1*X + B2*X^2 
 
Parameter Value Error 
---------------------------------------------------- 
A 7,97756E6 7,137 
B1 -203,1257 0,48741 
B2 -0,22721 0,00663 
---------------------------------------------------- 
 
R-Square(COD) SD N P 
---------------------------------------------------- 
0,99997 36,17484 81 <0.0001 
---------------------------------------------------- 

 
The curves are expressed by the following equations:  

2
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Figure 6. Frequency – temperature characteristic     

fC = f (t) of the C-mode. 
 
Mode (B,3,1,0). Polynomial Regression for CFTM2B: 
Y = A + B1*X + B2*X^2 
 
Parameter Value Error 
---------------------------------------------------- 
A 7,97756E6 7,137 
B1 -203,1257 0,48741 
B2 -0,22721 0,00663 
---------------------------------------------------- 
 
R-Square(COD) SD N P 
---------------------------------------------------- 
0,99997 36,17484 81 <0.0001 
---------------------------------------------------- 

 

2.3 Force to frequency experimental characteristic 

 
Diametral force sensitivity was previously 
investigated [4],[5] and is known to depend of the 
azimuth angle (figure 1). For a given direction the 
force-frequency dependence is linear up to 95% of 
the crushing load. 

 
Figure 8. Linear frequency to force characteristic of 

C-mode fC = f (F) at ψa = 75 0azymouth angle. 
As seen in figure 3.c, we tested the resonant structure 
under compressional diametral force by adding 
calibrated weights on the mobile superior blade. 

Nonlinearities of frequency response in figure 8 are 
not caused by the sensor, but especially by the 
bearing frictions. 
 
It has been experimentally investigated the frequency 
coefficient of force sensitivity for different force 
orientations [1]. Finally, it has been recorded that for 
an azimuth angleψa = 75 0 the force sensitivity of 
the C mode is almost maximum while the force 
sensitivity of the B mode is insignificant. 
 
 
Linear Fit for Frequency-Force Characteristic: 
Y = A + B * X 
 
Parameter Value Error 
--------------------------------------- 
A 7294794,04 0,84218 
B -14,94751 0,08037 
--------------------------------------- 
 

For the azimuth angleψa = 75 0 the experimental 

sensitivity coefficients of the C and B modes are: 

Hz/N  95,14−=
∆

=
F
f

S C
FC  

FC
B

FB S
F
fS <<≅
∆
∆

=   0  

 
 

2.4 Transfer equations of force and temperature and 
related errors formulae 

 
Finally we get the set of equations relying the 
frequencies to nonelectric quantities temperature and 
force. 

FStbtbfff FBBBB ++=−=∆ 2
210              (x) 

FStctctcfff FCCCC +++=−=∆ 3
3

2
210  

From equation  (x)  we get the temperature value 
based on  fB frequency and SFBF factor. 

2

2
2
11

2
)(4

b
fFSbbb

t BFB ∆−⋅−−−
=  

Ignoring  factor the set of equations become: FSFB
2
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3
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With the solution: 
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Figure 9. Temperature to frequency transfer function 

where  factor is neglected. FSFB

 
We computed the Ft εε  si  relative error: 
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Force relative error is then given by formula: 
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Figure 10. Temperature absolute error caused by 

neglecting  factor FSFB
 

Ignoring  factor simplifies the microcontroller 
algorithm of extracting F and t values. However, as 
seen in figure 10, errors arise. For example, an error 
of ±2

FSFB

0 in ψa positioning angle will lead to force 

relative deviations of ±0.3%, which is still 
acceptable. 

2. QUARTZ THERMOSENSITIVE (QT) RESONATORS 

Several types of bulk acoustic wave QT resonators 
were designed and prototyped [7], intending 
progressive miniaturization [8] and improved 
electrical characteristics, starting from classical 
resonator shapes featuring circular plates with 
deposited electrodes and ending up with rectangular 
strip resonators. The strip resonators offer reduced 
plate size (up to 5.0 x 2.034 x 0.084 mm) and fit into 
TC39 enclosures for classical 32kHz wristwatch 
quartz. The thickness-shear main mode of QT 
resonators vibrates at 29 MHz. The NLC-cut (theta =  
-31°30’) of this family of resonators allows a 
temperature sensitivity of 1200 Hz/K. The resolution 
reach 0.0001K depending on the stability of the 
reference clock as well as the local conditions, which 
permits to utilize these sensors as secondary 
temperature references. Also, these resonators are 
very suitable for cryogenic temperature sensing (up 
to liquid helium boiling point of 4.2 K). 
 

 
Figure 11. The NLC-Cut in quartz. 

  
Figure 12. QT samples: classic round plate and reduced 

size strip resonator  
 



As seen in the figure below, frequency – to – 
temperature characteristic of QT resonators is not 
linear in wide ranges. In fact room temperature 
sensitivity (1200 Hz/K) decreases nonlinearily with 
the temperature dropping about 700 Hz/K at liquid 
nitrogen boiling point, or to only about 2 Hz/K at 
helium point (however, at that temperature all 
traditional measurement techniques are unusable) 

 
Figure 13. Typical frequency – to – temperature 
characteristic of QT sensors from liquid nitrogen     

up to room temperature 
 
 

3. DISTRIBUTED ELECTRONIC SYSTEM 

 
Main components of the electronic system of 
measurement are based on  master-slaves open 
architecture. Precise time base is obtained from a   
20 MHz reference temperature compensated 
oscillator (TCXO). This component is critical, since 
the accuracy of the system is dependant on the 
stability of the frequency reference; the system two 
types of conversions are possible: locally or master 
requested. TCXO reference can provide clock to one 
individual or several slave microcontrollers 
In figure 14 the slave system is configured for multi-
electrode (ME) resonators, with three counters 
enabled (two oscillators plus TCXO reference) 

 

Figure 14. Slave microcontroller architecture 
configured for multielectrode resonator 

Quartz QT sensors require one electronic oscillator. 
The same system can interface equally this type of 
resonator, by enabling two of its internal counters. 

 
 

Figure 14. Slave microcontroller architecture 
configured for quartz thermosensitive resonator 

 
 

 
Figure 16. Architecture of measurement system 

where the reference TCXO signal is connected to the 
bus. 

 

3.1 Slave microcontroller schematic 

Slave microcontroller schematic contains the 
following components: 

• Two independent oscillators connected to 
the multielectrode resonator 

• A microcontroller with three 16 bit 
integrated counters (PIC18F1320) 

• A EEPROM memory designed to store 
conversion parameters and recorded data 

• A synchronous serial interface bus to 
communicate with the master controller (for 
adjusting the registers and for delivering the 
data). 

• An “in circuit debug” (ICD2) interface for 
programming and debugging the mic-
rocontroller. 

• A common 16x2 LCD display. 
• Two touch buttons for menu browsing. 

 
The electronic schematic is not complicated, 
provided the need to offer a low cost-device. The 



TCXO interrupts the microcontroller at precise time 
periods (1/8 s, 1s or 8s). The frequencies are 
afterwards converted into temperature and/or force 
according to formulas presented in the 2nd paragraph 
and stored tables. Converted values are displayed to 
the LCD display (figures 18-19). The information 
may also be sent to a master (e.g. the computer) via 
the serial bus. 

 
Figure 17. Slave microcontroller schematic 

connected to TCXO. 
 

 

 

Figure 18. System local conversion (ME sensor) 
 

 
Figure 19. System local conversion (QT sensor) 

LCD display captures. 

 

3.1 Master microcontroller schematic and interface 

 
Master microcontroller (18F4550) schematic has the 
following features as seen in figure 14: 

• A synchronous serial interface bus to 
communicate with the slave controllers. 

• An LCD display and a keypad port 
• Four signaling state LEDs 
• Four channels 8-bit analog-to-digital  inputs 

to connect to TC1047A temperature sensors, 
HIH3610 humidity sensor and MPX4115 
pressure sensor (used for calibration 
purposes). 

 
Figure 20. Master microcontroller schematic 

The microcontroller is able to handle USB 
communication. The computer interface was done 
using USB-HID (human interface device) protocol.  
 

 
Figure 21. Labview primary acquisition interface 
interface.  
 
The resolution of the QT resonators reach 0.0001 0C. 
A temperature flow chart at maximum resolution 
may be noticed in figure 21. Counting period was 8 
seconds. The Y axis had a 0.0025 0C range. 
The resolution of a multielectrode self compensated  
sensor is 0.06 N and it ranges up to 200 N. 



4 CONCLUSIONS 

Frequency output resonators intended for non-
electrical quantities offer a better noise immunity 
than classical voltage output sensors, being suitable 
for remote or distributed systems, especially on harsh 
environments.  

Nowadays, since microcontrollers [9] and 
development tools [10] are very accessible and 
powerful, containing for instance integrated counters 
and bus interfaces, the design of low cost high 
precision measurement systems for resonant sensors 
is straightforward, as seen in te present paper. 
Further developments consist to improve the 
microcontroller-distributed algorithm and to realize a 
performing virtual instrumentation interface under 
National Instruments LabView [11].  
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