146 research outputs found
Arkansas Cotton Variety Test 2003
The primary aim of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties and advanced breeding lines in the major cotton-growing areas of Arkansas. This information helps seed dealers establish marketing strategies and assists producers in choosing varieties to plant. In this way, the annual test facilitates the inclusion of new, improved genetic material in Arkansas cotton production
Arkansas Cotton Variety and Strain Tests 1991
Varieties and advanced strains of cotton were evaluated in 1991 by the Arkansas Agricultural Experiment Station. Varieties and some advanced breeding lines were evaluated in the 1991 Arkansas Cotton Variety Test. Entries in the 1991 Commercial Cotton Strain Test included both released varieties that have not been evaluated in Arkansas and advanced breeding lines that may soon be available to producers
Space shuttle food system summary, 1981-1986
All food in the Space Shuttle food system was precooked and processed so it required no refrigeration and was either ready-to-eat or could be prepared for consumption by simply adding water and/or heating. A gun-type water dispenser and a portable, suitcase-type heater were used to support this food system during the first four missions. On STS-5, new rehydratable packages were introduced along with a needle-injection water dispenser that measured the water as it was dispensed into the packages. A modular galley was developed to facilitate the meal preparation process aboard the Space Shuttle. The galley initially flew on STS-9. A personal hygiene station, a hot or cold water dispenser, a convection oven, and meal assembly areas were included in the galley
Arkansas Cotton Variety Test 2002
The primary aim of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties and advanced breeding lines in the major cotton-growing areas of Arkansas. This information helps seed dealers establish marketing strategies and assists producers in choosing varieties to plant. In this way, the annual test facilitates the inclusion of new, improved genetic material into Arkansas cotton production. Variety adaptation is determined by evaluation of the varieties and lines at four University of Arkansas research stations located near Keiser, Clarkedale, Marianna, and Rohwer. Tests are duplicated in irrigated and non-irrigated culture at the Keiser and Marianna locations. In 2002, 37 entries were evaluated in the main test and 25 were evaluated in the first-year test. This report also includes the Mississippi County Cotton Variety Test (a large-plot, on-farm evaluation of 12 Round-up Ready varieties) and 12 other on-farm cotton variety tests conducted by the University of Arkansas Cooperative Extension Service
Yield, Earliness and Fiber Strength of Blends of Cotton (Gossypium hirsutum L.) Cultivars
Pricing of cotton (Gossypium hirsutum L.) has been determined primarily by fiber length and grade, which were manually determined. Implementation of the high volume instrument (HVI) cotton classing system in 1991 allowed other fiber quality parameters to be objectively and rapidly measured (Deussen, 1989). One quality parameter added to the pricing structure by the advent of HVI in determining the value of ginned lint is fiber strength (Table 1). Open-end spinning, a new technology being utilized by the textile industry, requires high-strength cotton fibers (\u3e25 g/tex) for manufacture of yarns. As this technology becomes more widely used, cotton with weaker fiber strength will become less desirable, and cotton grown in Arkansas may become less preferred b
Efficacy and safety of the reciprocal pulse defibrillator current waveform
The efficacy and safety of a new defibrillating current waveform, consisting of a low-tilt 5 ms trapezoidal pulse followed closely by a second identical pulse of opposite polarity, was tested m seven isolated, perfused, working canine hearts suspended in an isoresistive, isosmotic shock bath at 37 oC. The efficacy and safety of the reciprocal pulse was compared with a single 5 ms pulse, a single 10 ms pulse, and a dual (unidirectional) 5 ms pulse waveform. The mean threshold average current densities for the 5 ms single pulse, 10 ms single pulse, dual 5 ms pulse, and reciprocal pulse (absolute values) were 50, 38, 36, and 37 mA/cm2, respectively. The corresponding mean threshold energy densities in the shock bath were 2.8, 2.9, 2.9, and 3.1 mJ/cm3. Despite the differences in threshold current density among the waveforms, no differences in safety factor (shock strength for 50 per cent post-shock depression, divided by threshold shock strength) were found among the waveforms. The current safety factors were 5.4, 5.4, 5.6, and 5.5 for the 5 ms single pulse, 10 ms single pulse, dual unidirectional pulse and reciprocal pulse, respectively. The corresponding energy density safety factors were 25, 27, 29, and 27. Thus the use of this reciprocal pulse waveform provides no advantage in efficacy or safety over waveforms of the same total duration
Hard loss of stability in Painlev\'e-2 equation
A special asymptotic solution of the Painlev\'e-2 equation with small
parameter is studied. This solution has a critical point corresponding to
a bifurcation phenomenon. When the constructed solution varies slowly
and when the solution oscillates very fast. We investigate the
transitional layer in detail and obtain a smooth asymptotic solution, using a
sequence of scaling and matching procedures
Organic Field-Effect Transistors as Flexible, Tissue-Equivalent Radiation Dosimeters in Medical Applications
Radiation therapy is one of the most prevalent procedures for cancer treatment, but the risks of malignancies induced by peripheral beam in healthy tissues surrounding the target is high. Therefore, being able to accurately measure the exposure dose is a critical aspect of patient care. Here a radiation detector based on an organic fieldâeffect transistor (RADâOFET) is introduced, an in vivo dosimeter that can be placed directly on a patient\u27s skin to validate in real time the dose being delivered and ensure that for nearby regions an acceptable level of low dose is being received. This device reduces the errors faced by current technologies in approximating the dose profile in a patient\u27s body, is sensitive for doses relevant to radiation treatment procedures, and robust when incorporated into conformal largeâarea electronics. A model is proposed to describe the operation of RADâOFETs, based on the interplay between charge photogeneration and trapping
- âŠ