414 research outputs found

    Carbenic nitrile imines: Properties and reactivity

    Get PDF
    Structures and properties of nitrile imines were investigated computationally at B3LYP and CCSD(T) levels. Whereas NBO analysis at the B3LYP DFT level invariably predicts a propargylic electronic structure, CCSD(T) calculations permit a clear distinction between propargylic, allenic, and carbenic structures. Nitrile imines with strong IR absorptions above ca. 2150 cm-1 have propargylic structures with a CN triple bond (RCNNSiMe 3 and R2BCNNBR2), and those with IR absorptions below ca. 2150 cm-1 are allenic (HCNNH, PhCNNH, and HCNNPh). Nitrile imines lacking significant cumulenic IR absorptions at 1900-2200 cm -1 are carbenic (R-(C:)-N=N-Râ€Č). Electronegative but lone pair-donating groups NR2, OR, and F stabilize the carbenic form of nitrile imines in the same way they stabilize "normal" singlet carbenes, including N-heterocyclic carbenes. NBO analyses at the CCSD(T) level confirm the classification into propargylic, allenic, and carbenic reactivity types. Carbenic nitrile imines are predicted to form azoketenes 21 with CO, to form [2+2] and [2+4] cycloadducts and borane adducts, and to cyclize to 1H-diazirenes of the type 24 in mildly exothermic reactions with activation energies in the range 29-38 kcal/mol. Such reactions will be readily accessible photochemically and thermally, e.g., under the conditions of matrix photolysis and flash vacuum thermolysis

    Use of ring-expanded diamino- and diamidocarbene ligands in copper catalyzed azide-alkyne "click" reactions

    Get PDF
    The two-coordinate ring-expanded N-heterocyclic carbene copper­(I) complexes [Cu­(RE-NHC)<sub>2</sub>]<sup>+</sup> (RE-NHC = 6-Mes, 7-<i>o</i>-Tol, 7-Mes) have been prepared and shown to be effective catalysts under neat conditions for the 1,3-dipolar cycloaddition of alkynes and azides. In contrast, the cationic diamidocarbene analogue [Cu­(6-MesDAC)<sub>2</sub>]<sup>+</sup> and the neutral species [(6-MesDAC)­CuCl]<sub>2</sub> and [(6-MesDAC)<sub>2</sub>(CuCl)<sub>3</sub>] show good activity when the catalysis is performed on water

    Beyond Conventional N

    Full text link

    Lanthanide complexes of amino-carbenes : on the Samarium-carbene bond from DFT calculations

    No full text
    International audienc

    Silver-mediated intramolecular P–C coupling

    No full text
    International audienceSilver(I) salts mimic copper(I) but not gold(I) salts in the reaction with peri-iodo naphthyldiisopropylphosphine. The formation of the corresponding peri-cyclic phosphonium derivatives represents the first example of silver-mediated P–C coupling through a two-electron redox sequence

    Cyclometalated AuIII Complexes for Cysteine Arylation in Zinc Finger Protein Domains: towards Controlled Reductive Elimination

    Get PDF
    With the aim of exploiting the use of organometallic species for the efficient modification of proteins through C-atom transfer, the gold-mediated cysteine arylation through a reductive elimination process occurring from the reaction of cyclometalated AuIII C^N complexes with a zinc finger peptide (Cys2His2 type) is here reported. Among the four selected AuIII cyclometalated compounds, the [Au(CCON)Cl2] complex featuring the 2-benzoylpyridine (CCON) scaffold was identified as the most prone to reductive elimination and Cys arylation in buffered aqueous solution (pH 7.4) at 37 °C by high-resolution LC electrospray ionization mass spectrometry. DFT and quantum mechanics/molecular mechanics (QM/MM) studies permitted to propose a mechanism for the title reaction that is in line with the experimental results. Overall, the results provide new insights into the reactivity of cytotoxic organogold compounds with biologically important zinc finger domains and identify initial structure–activity relationships to enable AuIII-catalyzed reductive elimination in aqueous media
    • 

    corecore