106 research outputs found

    New Challenges for Translational Psychopharmacology

    Get PDF

    Effect of 5-azacytidine and galectin-1 on growth and differentiation of the human b lymphoma cell line bl36

    Get PDF
    BACKGROUND: 5-AzaCytidine (AzaC) is a DNA demethylating drugs that has been shown to inhibit cell growth and to induce apoptosis in certain cancer cells. Induced expression of the galectin1 (Gal1) protein, a galactoside-binding protein distributed widely in immune cells, has been described in cultured hepatoma-derived cells treated with AzaC and this event may have a role in the effect of the drug. According to this hypothesis, we investigated the effect of AzaC and Gal1 on human lymphoid B cells phenotype. METHODS: The effect of AzaC and Gal1 on cell growth and phenotype was determined on the Burkitt lymphoma cell line BL36. An immunocytochemical analysis for detection of Gal1 protein expression was performed in AzaC-treated cells. To investigate the direct effects of Gal1, recombinant Gal1 was added to cells. RESULTS: Treatment of lymphoid B cells with AzaC results in: i) a decrease in cell growth with an arrest of the cell cycle at G0/G1 phase, ii) phenotypic changes consistent with a differentiated phenotype, and iii) the expression of p16, a tumor-suppressor gene whose expression was dependent of its promoter demethylation, and of Gal1. A targeting of Gal 1 to the plasma membrane follows its cytosolic expression. To determine which of the effects of AzaC might be secondary to the induction of Gal1, recombinant Gal1 was added to BL36 cells. Treated cells displayed growth inhibition and phenotypic changes consistent with a commitment toward differentiation. CONCLUSIONS: Altered cell growth and expression of the cell surface plasma cell antigen, CD138 are detectable in BL36 cells treated by AzaC as well as by Gal1. It seems that AzaC-induced Gal1 expression and consequent binding of Gal1 on its cell membrane receptor may be, in part, involved in AzaC-induced plasmacytic differentiation

    058 The ongoing MESAMI translational research program

    Get PDF
    PurposeDespite the improvement of pharmacological and surgical therapies, the mortality related to ischemic heart failure remains high. During the last years, bone marrow-mesenchymal stem cell (BM-MSC) therapy has been proposed as a novel approach for the prevention and therapy of heart failure. Intramyocardial injection allows concentration of grafted cells within the injured zone. However, a major problem of with intraparenchymal route of administration is the early death of most of grafted cells. The goal of the MESAMI program is to evaluate the effect of intramyocardial administration of BM-MSC preconditioned or not with the pineal hormone melatonin in ischemic cardiomyopathy.Methods and ResultsOur preclinical investigations have designed a preconditioning strategy of BM-MSCs with the melatonin that significantly increases survival and efficacy of grafted cells in animal models of myocardial ischemia. Melatonin treatment significantly ameliorates the beneficial effects of BM-MSC on the recovery of cardiac function. In the mean time, we started a phase I clinical trial in patients with severe ischemic cardiomyopathy and no option of revascularization, using the NOGA XP system to guide injections into the myocardium. Based on our basic research results, we are developing a multicenter phase II trial on the effects of intramyocardial administration of melatonin-preconditioned BM-MSC in patients with chronic ischemic cardiomyopathy.ConclusionThe ongoing MESAMI program is representative of a translational research program in France

    Paroxetine suppresses recombinant human P2X7 responses

    Get PDF
    P2X7 receptor (P2X7) activity may link inflammation to depressive disorders. Genetic variants of human P2X7 have been linked with major depression and bipolar disorders, and the P2X7 knockout mouse has been shown to exhibit anti-depressive-like behaviour. P2X7 is an ATP-gated ion channel and is a major regulator of the pro-inflammatory cytokine interleukin 1β (IL-1β) secretion from monocytes and microglia. We hypothesised that antidepressants may elicit their mood enhancing effects in part via modulating P2X7 activity and reducing inflammatory responses. In this study, we determined whether common psychoactive drugs could affect recombinant and native human P2X7 responses in vitro. Common antidepressants demonstrated opposing effects on human P2X7-mediated responses; paroxetine inhibited while fluoxetine and clomipramine mildly potentiated ATP-induced dye uptake in HEK-293 cells stably expressing recombinant human P2X7. Paroxetine inhibited dye uptake mediated by human P2X7 in a concentration-dependent manner with an IC50 of 24 μM and significantly reduces ATP-induced inward currents. We confirmed that trifluoperazine hydrochloride suppressed human P2X7 responses (IC50 of 6.4 μM). Both paroxetine and trifluoperazine did not inhibit rodent P2X7 responses, and mutation of a known residue (F 95L) did not alter the effect of either drug, suggesting neither drug binds at this site. Finally, we demonstrate that P2X7-induced IL-1β secretion from lipopolysaccharide (LPS)-primed human CD14+ monocytes was suppressed with trifluoperazine and paroxetine

    Biological markers for anxiety disorders, OCD and PTSD: A consensus statement. Part II: Neurochemistry, neurophysiology and neurocognition.

    Get PDF
    OBJECTIVE: Biomarkers are defined as anatomical, biochemical or physiological traits that are specific to certain disorders or syndromes. The objective of this paper is to summarise the current knowledge of biomarkers for anxiety disorders, obsessive-compulsive disorder (OCD) and posttraumatic stress disorder (PTSD). METHODS: Findings in biomarker research were reviewed by a task force of international experts in the field, consisting of members of the World Federation of Societies for Biological Psychiatry Task Force on Biological Markers and of the European College of Neuropsychopharmacology Anxiety Disorders Research Network. RESULTS: The present article (Part II) summarises findings on potential biomarkers in neurochemistry (neurotransmitters such as serotonin, norepinephrine, dopamine or GABA, neuropeptides such as cholecystokinin, neurokinins, atrial natriuretic peptide, or oxytocin, the HPA axis, neurotrophic factors such as NGF and BDNF, immunology and CO2 hypersensitivity), neurophysiology (EEG, heart rate variability) and neurocognition. The accompanying paper (Part I) focuses on neuroimaging and genetics. CONCLUSIONS: Although at present, none of the putative biomarkers is sufficient and specific as a diagnostic tool, an abundance of high quality research has accumulated that should improve our understanding of the neurobiological causes of anxiety disorders, OCD and PTSD.The present work was supported by the Anxiety Disorders Research Network (ADRN) within the European College of Neuropsychopharmacology Network Initiative (ECNP-NI). Katherina Domschke’s work was supported by the German Research Foundation (DFG), Collaborative Research Centre “Fear, Anxiety, Anxiety Disorders” SFB-TRR-58, project C02.This is the author accepted manuscript. The final version is available from Taylor & Francis via http://dx.doi.org/10.1080/15622975.2016.119086

    Postpartum depression: An overview

    No full text
    Bringing a child into the world causes a lot of upheaval and it is normal, after childbirth, to feel sometimes happy, sometimes sad and irritable. Soon after the birth of their child, the majority of women (about 80%) experience what is called the 3rd day syndrome, or “baby blues”. Postpartum depression is a much more serious disorder that occurs around the third week after delivery. Symptoms occur for weeks to months or more. Postpartum depression can occur in the first 12 months after delivery, but in the majority of cases it occurs in the first few weeks after birth. It is manifested by anxiety, insomnia and depressive symptoms. The treatment of postpartum depression is essentially psychotherapeutic although SSRIs are used. A new molecule, brexanolone, may change the prognosis.</p

    Posttraumatic stress disorder concerning the end of the covid-19 lockdown: A mini review

    No full text
    Posttraumatic Stress Disorder (PTSD) occurs generally two months after an acute stress. We challenge the opportunity to observe an increase of PTSD after the end of the confinement induced by the pandemic of covid-19. PTSD can develop in response to exposure to an extremely stressful or traumatic event, or an exceptionally threatening situation. Examples include rape, violent attack, severe accidents, sudden destruction of home or community, or harm to close relatives or friends, but as well after confinement. The present paper tries to prevent from the consequences of fear of pandemic and confinement.</p
    corecore