119 research outputs found

    Crown plasticity enables trees to optimize canopy packing in mixed-species forests

    Get PDF
    It has been suggested that diverse forests utilize canopy space more efficiently than species‐poor ones, as mixing species with complementary architectural and physiological traits allows trees to pack more densely. However, whether positive canopy packing–diversity relationships are a general feature of forests remains unclear. Using crown allometric data collected for 12 939 trees from permanent forest plots across Europe, we test (i) whether diversity promotes canopy packing across forest types and (ii) whether increased canopy packing occurs primarily through vertical stratification of tree crowns or as a result of intraspecific plasticity in crown morphology. We found that canopy packing efficiency increased markedly in response to species richness across a range of forest types and species combinations. Positive canopy packing–diversity relationships were primarily driven by the fact that trees growing in mixture had sizably larger crowns (38% on average) than those in monoculture. The ability of trees to plastically adapt the shape and size of their crowns in response to changes in local competitive environment is critical in allowing mixed‐species forests to optimize the use of canopy space. By promoting the development of denser and more structurally complex canopies, species mixing can strongly impact nutrient cycling and storage in forest ecosystems.The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 265171.This is the accepted manuscript. The final version is available at http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.12428/abstract

    The role of wood harvest from sustainably managed forests in the carbon cycle

    Get PDF

    Climate modulates the effects of tree diversity on forest productivity

    Get PDF
    Despite growing evidence that, on average, diverse forests tend to be more productive than species‐poor ones, individual studies often report strongly contrasting relationships between tree species richness and above‐ground wood production (AWP). In the attempt to reconcile these apparently inconsistent results, we explored whether the strength and shape of AWP–diversity relationships shifts along spatial and temporal environmental gradients in forests across Europe. We used tree ring data from a network of permanent forest plots distributed at six sites across Europe to estimate annual AWP over a 15‐year period (1997–2011). We then tested whether the relationship between tree species richness and AWP changes (i) across sites as a function of large‐scale gradients in climatic productivity and tree packing density and (ii) among years within each sites as a result of fluctuating climatic conditions. AWP–species richness relationships varied markedly among sites. As predicted by theory, the relationship shifted from strongly positive at sites where climate imposed a strong limitation on wood production and tree packing densities were low, to weakly negative at sites where climatic conditions for growth were most suitable. In contrast, we found no consistent effect of interannual fluctuations in climate on the strength of AWP–species richness relationships within sites. Synthesis. Our results indicate that the shape and strength of the relationship between tree diversity and forest productivity depends critically on environmental context. Across Europe, tree diversity shows the greatest potential to positively influence forest productivity at either end of the latitudinal gradient, where adverse climatic conditions limit productivity and lead to the development of less densely packed stands.The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 265171.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/1365-2745.1252

    Species richness influences the spatial distribution of trees in European forests

    Get PDF
    The functioning of plant communities is strongly influenced by the number of species in the community and their spatial arrangement. This is because plants interact with their nearest neighbors and this interaction is expected to be stronger when the interacting individuals are ecologically similar in terms of resource use. Recent evidence shows that species richness alters the balance of intra- versus interspecific competition, but the effect of species richness, and phylogenetic and functional diversity on the spatial pattern of the plant communities remain less studied. Even far, how forest stand structure derived from past management practices can influence the relationship between species richness and spatial pattern is still unknown. Here, we evaluate the spatial distribution of woody individuals (DBH >7.5 cm) in 209 forest stands (i.e. plots) with an increasing level of species richness (from 1 up to 10 species) in six forest types along a latitudinal gradient in Europe. We used completely mapped plots to investigate the spatial pattern in each forest stand with point pattern techniques. We fitted linear models to analyze the effect of species richness (positively correlated with phylogenetic diversity) and functional diversity on tree spatial arrangements. We also controled this relationship by forest type and stand structure as a proxy of the management legacy. Our results showed a generalized positive effect of species richness and functional diversity on the degree of spatial clustering of trees, and on the spatial independence of tree sizes regardless of the forest type. Moreover, current tree spatial arrangements were still conditioned by its history of management; however its effect was independent of the number of species in the community. Our study showed that species richness and functional diversity are relevant attributes of forests influencing the spatial pattern of plant communities, and consequently forest functioning. © 2019 Nordic Society Oikos. Published by John Wiley & Sons LtdThis research was supported by the FunDivEUROPE project, receiving funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no.265171, the Spanish‐funded project REMEDINAL TE‐CM S2018/EMT‐4338 and COMEDIAS FEDER/Ministerio de Ciencia, InnovaciĂłn y Universidades – Agencia Estatal de InvestigaciĂłn/_Proyecto CGL2017‐83170‐R. RB was funded by a Marie SkƂodowska‐Curie Intra‐European fellowship (grant agreement no. 302445)

    Simulation of Flow of Mixtures Through Anisotropic Porous Media using a Lattice Boltzmann Model

    Full text link
    We propose a description for transient penetration simulations of miscible and immiscible fluid mixtures into anisotropic porous media, using the lattice Boltzmann (LB) method. Our model incorporates hydrodynamic flow, diffusion, surface tension, and the possibility for global and local viscosity variations to consider various types of hardening fluids. The miscible mixture consists of two fluids, one governed by the hydrodynamic equations and one by diffusion equations. We validate our model on standard problems like Poiseuille flow, the collision of a drop with an impermeable, hydrophobic interface and the deformation of the fluid due to surface tension forces. To demonstrate the applicability to complex geometries, we simulate the invasion process of mixtures into wood spruce samples.Comment: Submitted to EPJ

    Estimate of Leaf Area Index in an Old-Growth Mixed Broadleaved-Korean Pine Forest in Northeastern China

    Get PDF
    Leaf area index (LAI) is an important variable in the study of forest ecosystem processes, but very few studies are designed to monitor LAI and the seasonal variability in a mixed forest using non-destructive sampling. In this study, first, true LAI from May 1st and November 15th was estimated by making several calibrations to LAI as measured from the WinSCANOPY 2006 Plant Canopy Analyzer. These calibrations include a foliage element (shoot, that is considered to be a collection of needles) clumping index measured directly from the optical instrument, TRAC (Tracing Radiation and Architecture of Canopies); a needle-to-shoot area ratio obtained from shoot samples; and a woody-to-total area ratio. Second, by periodically combining true LAI (May 1st) with the seasonality of LAI for deciduous and coniferous species throughout the leaf-expansion season (from May to August), we estimated LAI of each investigation period in the leaf-expansion season. Third, by combining true LAI (November 15th) with litter trap data (both deciduous and coniferous species), we estimated LAI of each investigation period during the leaf-fall season (from September to mid-November). Finally, LAI for the entire canopy then was derived from the initial leaf expansion to the leaf fall. The results showed that LAI reached its peak with a value of 6.53 m2 m−2 (a corresponding value of 3.83 m2 m−2 from optical instrument) in early August, and the mean LAI was 4.97 m2 m−2 from May to November using the proposed method. The optical instrument method underestimated LAI by an average of 41.64% (SD = 6.54) throughout the whole study period compared to that estimated by the proposed method. The result of the present work implied that our method would be suitable for measuring LAI, for detecting the seasonality of LAI in a mixed forest, and for measuring LAI seasonality for each species

    Evenness mediates the global relationship between forest productivity and richness

    Get PDF
    1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions

    Climatic controls of decomposition drive the global biogeography of forest-tree symbioses

    Get PDF
    The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species7, constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species
    • 

    corecore