81 research outputs found

    Chemical composition, antioxidant, and antimicrobial properties of Mentha subtomentella: in sight in vitro and in silico analysis

    Get PDF
    Our research focused on assessing essential oils (MSEO) and aqueous extracts (MSAE) derived from M. subtomentella leaves, with a primary focus on evaluating their properties. From 1 kg of leaves, we successfully obtained 18 mL of essential oil. Upon conducting GC/MS analysis, we identified eleven compounds within the oil, collectively accounting for 100% of the constituents identified. Notably, the predominant compounds in the leaf oil were p-Menth-48) -en-3-one (50.48%), 9-Ethylbicyclo (3.3.1) nonan-9-ol (10.04%) (E)-3,3-Dimethyl-delta-1, alpha-cyclohexaneacetaldehyde (8.53%), and D-Limonene (7.22%). Furthermore, utilizing HPLC/DAD, we explored the phenolic profile of MSAE, extracted through decoction. This analysis revealed the presence of fifty-eight compounds, with five major components collectively constituting 61% of the total compounds identified, rosmarinic acid as the major one. We evaluated the antimicrobial effectiveness of the MSEO against ten different strains, observing its notable efficacy against A. Niger (MIC = 0.09%), P. digitatum (MIC = 0.5%), and G. candidum (MIC = 1%). However, the essential oil demonstrated comparatively lower efficacy against bacteria than fungi. In contrast, the MSAE did not exhibit any antimicrobial activity against the tested strains. Regarding antioxidant activity, the aqueous extract displayed a significantly higher antioxidant capacity than the essential oil, which exhibited relatively lower antioxidant activity. The IC50 values were determined to be 0.04 ± 0.01 mg/mL, 0.17 ± 0.01 mg/mL, and 13% ± 0.01% (V/V), for ascorbic acid MSAE and MSEO, respectively. We used a computational method called molecular docking to investigate how certain plant compounds affect antioxidant, antibacterial, and antifungal activities. This involved analyzing the interactions between these compounds and specific protein targets known for their roles in these activities

    Immunoinformatics and reverse vaccinology approach in designing a novel highly immunogenic multivalent peptide-based vaccine against the human monkeypox virus

    Get PDF
    Background: Monkeypox is a highly infectious zoonotic disease, often resulting in complications ranging from respiratory illnesses to vision loss. The escalating global incidence of its cases demands prompt attention, as the absence of a proven post-exposure treatment underscores the criticality of developing an effective vaccine.Methods: Interactions of the viral proteins with TLR2 and TLR4 were investigated to assess their immunogenic potentials. Highly immunogenic proteins were selected and subjected to epitope mapping for identifying B-cell and MHC class I and II epitopes. Epitopes with high antigenicity were chosen, considering global population coverage. A multi-target, multi-epitope vaccine peptide was designed, incorporating a beta-defensin 2 adjuvant, B-cell epitopes, and MHC class I and II epitopes.Results: The coordinate structure of the engineered vaccine was modeled and validated. In addition, its physicochemical properties, antigenicity, allergenicity, and virulence traits were evaluated. Molecular docking studies indicated strong interactions between the vaccine peptide and the TLR2 receptor. Furthermore, molecular dynamics simulations and immune simulation studies reflected its potent cytosolic stability and robust immune response dynamics induced by the vaccine.Conclusion: This study explored an innovative structure-guided approach in the use of immunoinformatics and reverse vaccinology in pursuit of a novel multi-epitope vaccine against the highly immunogenic monkeypox viral proteins. The simulation studies indicated the engineered vaccine candidate to be promising in providing prophylaxis to the monkeypox virus; nevertheless, further in vitro and in vivo investigations are required to prove its efficacy

    Protective Effect of Chemically Characterized Polyphenol-Rich Fraction from Apteranthes europaea (Guss.) Murb. subsp. maroccana (Hook.f.) Plowes on Carbon Tetrachloride-Induced Liver Injury in Mice

    Get PDF
    Apteranthes europaea (Guss.) Murb. subsp. maroccana (Hook.f.) Plowes (A. europaea) is a medicinal plant widely used in traditional medicines to treat various diseases including hepatic pathogenesis. This study was conducted to evaluate the protective effect of chemically characterized polyphenol-rich fraction from A. europaea on carbon tetrachloride-induced liver injury in mice. The chemical characterization of A. europaea polyphenol-rich fraction was carried out using HPLC-DAD (high-performance liquid chromatography (HPLC) with a diode-array detector (DAD)). Carbon tetrachloride (CCl4) was used to induce liver injuries in mice as described in previous works. A polyphenol-rich fraction from A. europaea was used at a dose of 50 mg/Kg to study its hepatoprotective effect. Next, histopathological and biochemical alterations were investigated. The HPLC analysis revealed the presence of several phenolic compounds: gallic acid, methyl gallate, rutin, ferulic acid, and resorcinol. Regarding the mice treated with a polyphenol-rich fraction from A. europaea up to 50 mg/Kg and carbon tetrachloride, no significant biochemical nor histological alterations occurred in their liver; meanwhile, serious biochemical and histopathological changes were noted for liver recovered from the mice treated with carbon tetrachloride only. In conclusion, A. europaea extract is a promising source of hepatoprotective agents against toxic liver injury

    In-Vivo Antidiabetic Activity and In-Silico Mode of Action of LC/MS-MS Identified Flavonoids in Oleaster Leaves

    Get PDF
    Background: Olea europea L. subsp. europaea var. sylvestris (Mill) Lehr (Oleaster) is a wild endemic olive tree indigenous to the Mediterranean region. Olea europea leaves represent a natural reservoir of bioactive molecules that can be used for therapeutic purposes. Aim of the study: This work was conducted to study antidiabetic and antihyperglycemic activities of flavonoids from oleaster leaves using alloxan-induced diabetic mice. The mode of action of flavonoids against eight receptors that have a high impact on diabetes management and complication was also investigated using molecular docking. Results: During 28 days of mice treatment with doses 25 and 50 mg/kg b.w, the studied flavonoids managed a severe diabetic state

    Caralluma europaea (Guss.) N.E.Br.: Anti-Inflammatory, Antifungal, and Antibacterial Activities against Nosocomial Antibiotic-Resistant Microbes of Chemically Characterized Fractions

    Get PDF
    Caralluma europaea (Guss.) N.E.Br.: (C. europaea) is a wild medicinal plant belonging to the family Apocynaceae. It is commonly used in traditional medicines for treating several diseases. The present work aims to evaluate the anti-inflammatory, antibacterial, and antifungal potentials of C. europaea fractions including hydro ethanol (ET CE), n-butanol (But CE), and polyphenol (Poly CE). The chemical composition of hydroethanol, n-butanol, and polyphenol-rich fractions from C. europaea were determined using GC-MS after silylation. The anti-inflammatory effect of hydroethanol, n-butanol, and polyphenol-rich fractions was studied by carrageenan-induced paw edema. Antibacterial and antifungal activities of hydroethanol, n-butanol, and polyphenol-rich fractions against Gram-positive bacteria, Gram-negative bacteria, and yeasts were assessed using the disc diffusion and micro-dilution assays. The findings of the chemical characterization affirmed the presence of interesting bioactive compounds in C. europaea fractions. The polyphenol-rich fraction was the best inhibitor of edema by75.68% after 6 h of treatment. The hydroethanol fraction was the most active against both bacteria and yeasts. This study contributes to society as it provides potential bioactive compounds in C. europaea extract, which may help in fighting nosocomial antibiotic-resistant microbes

    Caralluma europaea (Guss.) N.E.Br.: Anti-Inflammatory, Antifungal, and Antibacterial Activities against Nosocomial Antibiotic-Resistant Microbes of Chemically Characterized Fractions

    Get PDF
    Caralluma europaea (Guss.) N.E.Br.: (C. europaea) is a wild medicinal plant belonging to the family Apocynaceae. It is commonly used in traditional medicines for treating several diseases. The present work aims to evaluate the anti-inflammatory, antibacterial, and antifungal potentials of C. europaea fractions including hydro ethanol (ET CE), n-butanol (But CE), and polyphenol (Poly CE). The chemical composition of hydroethanol, n-butanol, and polyphenol-rich fractions from C. europaea were determined using GC-MS after silylation. The anti-inflammatory effect of hydroethanol, n-butanol, and polyphenol-rich fractions was studied by carrageenan-induced paw edema. Antibacterial and antifungal activities of hydroethanol, n-butanol, and polyphenol-rich fractions against Gram-positive bacteria, Gram-negative bacteria, and yeasts were assessed using the disc diffusion and micro-dilution assays. The findings of the chemical characterization affirmed the presence of interesting bioactive compounds in C. europaea fractions. The polyphenol-rich fraction was the best inhibitor of edema by75.68% after 6 h of treatment. The hydroethanol fraction was the most active against both bacteria and yeasts. This study contributes to society as it provides potential bioactive compounds in C. europaea extract, which may help in fighting nosocomial antibiotic-resistant microbes

    Anacyclus pyrethrum (L): Chemical Composition, Analgesic, Anti-Inflammatory, and Wound Healing Properties

    Get PDF
    Background: Anacyclus pyrethrum (A. pyrethrum) is a wild species belonging to the family Asteraceae, which is used in traditional medicines. Aim of the study: This work was undertaken to study the chemical composition, analgesic, anti-inflammatory, and wound healing properties of hydroalcoholic extracts of different parts (roots, seeds, leaves, and capitula) of A. pyrethrum. Material and Methods: The phytochemical analysis of the studied extracts was conducted by GC-MS. The analgesic activity was evaluated in mice using acetic acid and formaldehyde methods. The anti-inflammatory activity was tested using the inhibitory method of edema induced in rats. The healing activity of the hydroethanolic extracts was explored by excision and incision wound healing models in rats. Results: The phytochemical analysis of the studied plant extracts affirmed the presence of interesting compounds, including some newly detected elements, such as sarcosine, N-(trifluoroacetyl)-butyl ester, levulinic acid, malonic acid, palmitic acid, morphinan-6-One, 4,5.alpha.-epoxy-3-hydroxy-17-methyl, 2,4-undecadiene-8,10-diyne-N-tyramide, and isovaleric acid. The extracts of different parts (roots, seeds, leaves, and capitula) exhibited promising anti-inflammatory, analgesic, and wound healing effects, with percentages of inhibition up to 98%, 94%, and 100%, respectively. Conclusion: This study might contribute towards the well-being of society as it provides evidence on the potential analgesic, anti-inflammatory, and wound healing properties of A. pyrethrum

    Anacyclus pyrethrum (L): Chemical Composition, Analgesic, Anti-Inflammatory, and Wound Healing Properties

    Get PDF
    Background: Anacyclus pyrethrum (A. pyrethrum) is a wild species belonging to the family Asteraceae, which is used in traditional medicines. Aim of the study: This work was undertaken to study the chemical composition, analgesic, anti-inflammatory, and wound healing properties of hydroalcoholic extracts of different parts (roots, seeds, leaves, and capitula) of A. pyrethrum. Material and Methods: The phytochemical analysis of the studied extracts was conducted by GC-MS. The analgesic activity was evaluated in mice using acetic acid and formaldehyde methods. The anti-inflammatory activity was tested using the inhibitory method of edema induced in rats. The healing activity of the hydroethanolic extracts was explored by excision and incision wound healing models in rats. Results: The phytochemical analysis of the studied plant extracts affirmed the presence of interesting compounds, including some newly detected elements, such as sarcosine, N-(trifluoroacetyl)-butyl ester, levulinic acid, malonic acid, palmitic acid, morphinan-6-One, 4,5.alpha.-epoxy-3-hydroxy-17-methyl, 2,4-undecadiene-8,10-diyne-N-tyramide, and isovaleric acid. The extracts of different parts (roots, seeds, leaves, and capitula) exhibited promising anti-inflammatory, analgesic, and wound healing effects, with percentages of inhibition up to 98%, 94%, and 100%, respectively. Conclusion: This study might contribute towards the well-being of society as it provides evidence on the potential analgesic, anti-inflammatory, and wound healing properties of A. pyrethrum

    The combination of multi-approach studies to explore the potential therapeutic mechanisms of imidazole derivatives as an MCF-7 inhibitor in therapeutic strategies

    Get PDF
    Breast cancer covers a large area of research because of its prevalence and high frequency all over the world. This study is based on drug discovery against breast cancer from a series of imidazole derivatives. A 3D-QSAR and activity atlas model was developed by exploring the dataset computationally, using the machine learning process of Flare. The dataset of compounds was divided into active and inactive compounds according to their biological and structural similarity with the reference drug. The obtained PLS regression model provided an acceptable r2 = 0.81 and q2 = 0.51. Protein-ligand interactions of active molecules were shown by molecular docking against six potential targets, namely, TTK, HER2, GR, NUDT5, MTHFS, and NQO2. Then, toxicity risk parameters were evaluated for hit compounds. Finally, after all these screening processes, compound C10 was recognized as the best-hit compound. This study identified a new inhibitor C10 against cancer and provided evidence-based knowledge to discover more analogs

    Comprehensive human health risk assessment of heavy metal contamination in urban soils: insights from selected metropolitan zones

    Get PDF
    Introduction: This study aims to assess the extent of heavy metal contamination in urban soils in sixteen selected cities of Pakistan, encompassing the elements cadmium (Cd), lead (Pb), cobalt (Co), zinc (Zn), chromium (Cr), nickel (Ni), manganese (Mn), iron (Fe), and copper (Cu).Methods: The data utilized for this study was collected from online literature during the period 2005 to 2019. This study investigated potential threats to human health through a comprehensive analysis, considering standards such as Enrichment Factors (EF), Geo-accumulation Indices (Igeo), and Human Health Risk Assessment (HHRA).Results: Geo-accumulation Index results indicated varied risk intensities, with Cu, Pb, Co, Mn, and Fe exhibiting “no pollution” levels, while other elements show “moderate to extremely contaminated” values. EF analysis provided evidence of heavy metal presence, revealing a spectrum from “no pollution” to “moderate to extremely high pollution” for Cd, Zn, Cr, Ni, and Cu. The health risk assessment identified both carcinogenic and non-carcinogenic dangers for adults and children.Discussion: These findings highlighted the substantial contribution of identified sources such as industrial processes, vehicular emissions, sewage sludge, urban flooding, and the production and use of metallic materials that have elevated heavy metal levels in the urban soils. This established the link between urban industrial zones, human health, and long-term economic sustainability. This study provides essential guidance for decision makers to develop effective strategies for soil remediation, enhanced industrial practices, and regulatory measures to address heavy metal contamination in urban areas, ensuring the wellbeing and sustainable environmental quality management in cities
    • …
    corecore