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Breast cancer covers a large area of research because of its prevalence and high
frequency all over the world. This study is based on drug discovery against breast
cancer from a series of imidazole derivatives. A 3D-QSAR and activity atlas model
was developed by exploring the dataset computationally, using the machine
learning process of Flare. The dataset of compounds was divided into active
and inactive compounds according to their biological and structural similarity with
the reference drug. The obtained PLS regression model provided an acceptable
r2 = 0.81 and q2 = 0.51. Protein-ligand interactions of active molecules were
shown by molecular docking against six potential targets, namely, TTK, HER2, GR,
NUDT5, MTHFS, and NQO2. Then, toxicity risk parameters were evaluated for hit
compounds. Finally, after all these screening processes, compound C10 was
recognized as the best-hit compound. This study identified a new inhibitor
C10 against cancer and provided evidence-based knowledge to discover more
analogs.
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Introduction

Cancer is the abnormal and uncontrolled growth of cells that is caused by the mutation of
genes. This mutation may lead to an accelerated rate of cell division, so it is the major cause of
death worldwide (Ali et al., 2017). A frequently occurring cancer in women is breast cancer and
approximately 1 million women are affected by it every year. Obesity, consumption of alcohol,
genetics, aging, menopause, diabetes mellitus (type 2), high estrogen levels, radiation exposure,
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smoking, menarche, sex, and physical activity are the major risk factors
responsible for causing breast cancer (Ataollahi et al., 2015; Escala-
Garcia et al., 2020; Anandan et al., 2022).

The genetic mutation causes the development and progression
of breast tumors. Anomalous amplification and mutation of genes
cause the initiation of tumors such as a mutation in the Breast
Cancer gene (BRCA1/2), RB Transcriptional Corepressor 1 (RB1),
Human epidermal growth factor receptor 2 (HER2), Fragile
Histidine Triad Diadenosine Triphosphatase (FHIT), tumor
protein P53, Epidermal Growth Factor Receptor (EGFR),
extracellular signal-regulated kinase (ERK), Mitogen-activated
protein kinase (MEK), and Rat sarcoma (Ras) genes that can lead
to breast cancer (Figure 1) (Dickson, 1990; Sun et al., 2017;
Lakshmithendral et al., 2019a).

Endogenous estrogen and exogenous estrogen can both cause
breast cancer. Hormone replacement therapy (HRT; the process in
which endogenous estrogen is administered in menopausal females)
also increases the risk of breast cancer (Sun et al., 2017). Androgen
hormone is converted to estrogen through an enzyme complex,
aromatase. Aromatase is detected in the stromal cell component of
the breast; it is also located in the breast epithelial cells. Studies have
shown that the level of aromatase was higher in breast tumor cells
than in normal cells (Brueggemeier et al., 2003; Pasqualini and
Chetrite, 2005). Leptin is another hormone involved in breast
cancer; its overexpression causes an increase in cell proliferation
and thus leads to breast cancer (Jardé et al., 2011).

Breast cancer is a serious problem that needs to be solved. For
this purpose, considerable advances have beenmade in breast cancer
treatment (Howell et al., 2014). Till now, many drugs have been
synthesized to cure this deadly disease. Breast cancer-targeted
medication utilizes molecules or drugs that suppress breast
cancer cell growth in various ways (Maruthanila et al., 2017).
Targeted drugs either kill the cancer cells or retard their growth.
For example, the expression of abnormal genes such as HER2 (which

stimulates breast cancer cell growth) can be blocked by using this
medication (Masoud and Pagès, 2017; Lakshmithendral et al.,
2019b).

The most commonly targeted breast cancer cell line is MCF-7
because it has been proven to be the most suitable cell line for the
investigation of breast cancer all over the world (Lee et al., 2015).
MCF-7 cells are universally used for experiments on ER (estrogen
receptor) positive breast cancer cells. They are cultured easily,
and they maintain their ER expression during treatment with a
targeted drug. For this reason, they are highly suitable for anti-
hormone therapy resistance studies. MCF-7 cells are very well
distinguished and an excellent experience of this cell line permits
researchers to utilize these cells to bring more insights into the
treatment of breast cancer through viable in vitro assays (Comşa
et al., 2015).

The use of machine learning has created a revolutionary impact
on chemical sciences by quickening the use of computational
chemistry methods (Keith et al., 2021). Computer-aided drug
designing aims at the discovery and analysis of suitable
medications and biologically active compounds by computational
approaches. In structure-based drug designing (SBDD), 3D
structural information of proteins is utilized to design new drugs
by identifying the sites and their interactions that are useful for the
biological activity of ligands. In ligand-based drug designing
(LBDD), ligand information is utilized to set up an interrelation
between their physiochemical characteristics and biological
activities. This information is useful for designing new drugs and
for the optimization of already known drugs to enhance their
activity.

Drug discovery is a costly procedure and time-consuming
process; therefore, we have employed computational processes for
drug discovery. The advancements in computational methods and
high-throughput virtual screening have developed a remarkable
pharmaceutical approach that does not only reduce the time
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phase but also introduces highly efficient drugs, having efficient
biological activity and minimum side effects for a specific disease
(Lakshmithendral et al., 2019b).

Imidazole is the core of FDA-approved drugs with acceptable
activities in practice. Several compounds having imidazole core
have been utilized for their medicinal uses in clinical trials for
several diseases. There is an increasing trend towards imidazole-
based medicinal chemistry which has added promising and
potential therapeutic values of imidazole-derived compounds
for treating incurable diseases. The compounds with imidazole
scaffold provide electronic-rich characteristics responsible for
binding with a variety of enzymes, proteins, and receptors
compared to the other heterocyclic rings. In this study, the
role of imidazole drugs as anti-breast cancer agents have been
discussed using the computational approach (Chopra and Sahu,
2019). Heterocyclic compounds are very well-known molecules
in organic chemistry because they show remarkable medicinal
properties as well as anticancer properties (Ali et al., 2017).
Imidazoles are very important heterocyclic compounds that
are widely utilized all over the world for drug discovery
processes and are compounds of interest for researchers for
centuries (Gaba and Mohan, 2016). Previous studies have
proved the vital role of imidazole and its derivatives in
medicinal chemistry because of their efficient uses as anti-
coagulant, anti-cancer, anti-parasitic, anti-helmintic, anti-
fungal, antimicrobial, anti-inflammatory, antibacterial, anti-
viral, anti-diabetic, anti-malarial, antihypertensive, and anti-
tubercular drugs (Abbasov et al., 2012; Verma et al., 2013;
Mumtaz et al., 2016; Ali et al., 2017). Some FDA-approved
anticancer imidazole derivatives are shown in Figure 2.

In spite of extensive studies on imidazole derivatives and
their in vitro potential activity, their in-vivo and, specifically, in

silico activity of breast cancer has not been carried out. The
computer-based methodologies, i.e., in silico approaches are
powerful tools for the recognition of synthetic imidazole
compounds and their potential to inhibit breast cancer. Using
these approaches, the new drug candidates can be evaluated in a
faster way, reducing costs and accelerating drug discovery
(Gowtham et al., 2023). This study aimed to investigate the in
silico anticancer activities of imidazole derivatives (Rizzo et al.,
2014).

In this study, maximum tools used for structure- and ligand-
based drug designing have been used, and key regularity features
governing the toxicity and anticancer activity of imidazole
derivatives have been studied. By discovering and
characterizing potential imidazole derivatives as anti-breast
cancer agents, this research will contribute to the growing
repertoire of drug candidates, expanding the possibilities for
future therapeutic interventions. It has the potential to
revolutionize the therapeutic landscape by providing new and
effective options for breast cancer patients, deepening our
understanding of the disease, and inspiring further
advancements in the field. It will provide some more valuable
insights into the virtual screening and drug designing process and
will demonstrate the drug designing process which will lead to
drug discovery containing a pharmacophore against breast
cancer which is a harmful disease affecting millions of lives all
over the world (Alam and Khan, 2017).

Materials and methods

In this study, the 3D-QSAR modeling has been accomplished
using the Forge V6.0 software. A total of 84 compounds

FIGURE 1
Anomalous amplification and mutation of genes for the initiation of tumor.
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(Supplementary Table S1) with reported anti-breast cancer activity
were used while developing the model. An FDA-approved drug
Fulvestrant which is a steroidal anti-estrogen used to treat hormone-
receptor-positive metastatic breast cancer is used as a reference
compound.

The development of the 3D-QSAR model

Data collection and structure preparation
The dataset of imidazole compounds was collected from prior

reports/literature. Their structures were drawn in Chem Draw
professional (Perkin Elmer), and 2-Dimentional structures were
converted into 3-Dimentional structures using Chem3D Ultra
(Version 19.1.0.8, Perkin Elmer). The value of enzyme inhibition
(experimental activity) was expressed as (IC50) for the training
dataset which was then altered to its positive logarithmic scale
using the formula: pIC50 = −log(IC50) and defined as a
dependent variable. The database of compounds was generated in
Microsoft Excel as a CSV output file (comma delimited).

Conformation hunt and pharmacophore
generation

To demonstrate a hypothesis for 3D conformation, the Field
Template module of Forge V6.0 software was used as no structural
data was attainable for imidazole derivatives in their target-bound

state. For this purpose, the information about field and shape was
utilized by the template from the library of 84 compounds. The
hypothesis was developed by generating the three-dimensional field
point pattern and calculating the field points of bioactive
conformation.

Compound alignment and the development of the
3D-QSAR model

At the connexion point of a 3D grid, the 3D-QSAR method
calculates various molecular properties as molecular descriptors.
This methodology covers the complete data of aligned training set
compounds. The pharmacophore template was transported into the
Forge V6.0 software, followed by the alignment of compounds with
the associated template. After the alignment of 84 compounds with
known IC50 values, the 3D-QSAR model was built using the Field
point-based descriptors. While building the model, the maximum
distance of sample points was set to 1.0Å, the maximal number of
components was set to 20, Y scrambles were adjusted to 50, and
volumetric as well as electrostatic fields were also used. For overall
resemblance, 50% dice volume similarity and 50% field similarity
were achieved using the Forge software. The experimental activity
(IC50) of compounds was changed to pIC50 which is equal to the
negative log of IC50. The set of 84 compounds was divided into the
training set and test set with a ratio of 80% and 20%, respectively,
and one compound was selected as the reference drug to assess the
QSAR modeling using the activity stratified method.

FIGURE 2
FDA-Approved imidazole derivatives.
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QSAR model validation
The model was verified by q2 (cross regression coefficient), r2

(regression coefficient), and similarity score of conformers for every
ligand. LOO technique (leave-one-out) was used to assess the derived
3D-QSARmodel. The LOO cross-validation technique is thought to be
one of the most efficient techniques for the validation of the regression
model having a small training dataset. The data size of N-1 was used for
training and the remaining one was tested; N identifies the complete
dataset. In the LOOCV technique, the process of testing and training
was repeated for the N number of times, and in this way, each data was
passed through the testing method. Then, the test data which is not in
the training set is used to derive the 3D-QSAR model.

SAR activity-atlas models visualization
The global aspect of training data was studied quantitatively by

using the Bayesian approach. The hydrophobicity, electrostatics, and
shape attributes, which lie beneath the SAR of a particular set of
compounds, are better understood by this approach. These 3D
models were viewed to achieve valuable information. The three
types of interconnected biochemical evaluated data including
regions explored analysis, activity cliff summary, and average of
actives were revealed by the Activity-atlas study. The regions
explored analysis exhibited the areas of aligned and fully
explored compounds. The details about negative and positive
electrostatic sites, appropriate and inappropriate hydrophobicity,
and appropriate shape of actives were provided by the activity cliff
summary. On the other hand, an average of actives helped in
showing the common parts in active compounds which were
selected.

Target prediction analysis by molecular
docking

The preparation of protein
The 3D structures of target proteins (PDB ID: 7CHM, 3PP0,

4UDD, 5NWH, 3HY3, and 4ZVM) (Supplementary Table S2) were

downloaded from the RCSB PDB database (https://www.rcsb.org/).
The protein preparation was performed to accomplish various
tasks such as identifying the active site, deleting alternate
conformations, interpolating missing atoms in incomplete
residues, protonating titratable residues, modeling the missing
loop areas, and removing the water molecules and heteroatoms
(Alam and Khan, 2019). The ligands of proteins were used to
identify the active sites from the “Define and Edit Binding Site”
option in Discovery Studio, and SBD_Site_Sphere was generated
(Figure 3).

The preparation of active ligands
Active ligands along with reference Fulvestrant (standard

drug) having known inhibitory potentials were collected from
literature, and SDF files of some of the compounds were
downloaded from PubChem while others were generated from
the Chem3D software where they were optimized through
MM2 and MMF9 force field. For ligand preparation, the
“Open Babel” software was used. For this purpose, the input
file was imported in the form of sdf–MDL MOL format and the
output path was selected in pdb format. Then the ligand was
converted into the desired form.

Protein-ligand docking studies
PDBQT files of proteins and ligands were prepared, and by

using the Graphical User Interface program AutoDock Tools,
grid box creation was accomplished. Fragmental volumes to the
protein, polar hydrogens, united atom Kollman charges, and
solvation parameters were assigned by AutoDock tools. After
preparation, all files were saved as PDBQT. Preparation of the
grid map was done by using a grid box via AutoGrid. The grid size
was selected as 60 × 60 × 60 XYZ points with a grid spacing of
0.375Å. Default settings were used for all other parameters.
Autodock was used for docking protocol and information
about proteins and ligands was used along with grid box
features in the configuration file. Both ligands and proteins are
considered rigid when using Autodock. The results lower than

FIGURE 3
Generation of binding site by using discovery studio.
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1.0Å in the root-mean-square deviation were assembled and were
depicted by the result with the most suitable free-binding energy
while the results with the lowest binding affinity or binding
energy were extracted and subjected to further analysis (Azam
and Abbasi, 2013).

Molecular dynamics simulation

MD simulation was accomplished via the iMOD server
(https://imods.iqfr.csic.es/) to assess the physical movement
and stability of protein-ligand complexes (Sumera et al.,
2022). The structural dynamics of the protein-ligand
complexes were analyzed using iMODS and the molecular
motion was also determined. The iMOD server employs
Normal mode analysis (NMA) to calculate the internal
coordinates of protein to evaluate its stability. In this study,
the conformational fluctuations of docked complexes were
demonstrated and their slow dynamics were investigated using
NMA (Kirar et al., 2022).

FIGURE 4
3-Dimenssional Field points for QSAR model development. The red colour indicates positive electrostatic potential while negative electrostatic
potential is represented by the blue colour. The orange color shows hydrophobicity and the yellow color denotes van der Waals descriptors localization.

FIGURE 5
Conformational alignment of active compounds.

Frontiers in Chemistry frontiersin.org06

Rashid et al. 10.3389/fchem.2023.1197665

https://imods.iqfr.csic.es/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1197665


TABLE 1 Active compounds obtained after the 3D-QSAR model development.

Sr No Compounds Structure IC50 (µM) PIC50 References

1 C6 0.30 6.5228 Meenakshisundaram et al. (2019)

2 C7 0.38 ± 0.08 6.4202 Fan et al. (2020)

3 C10 0.38 ± 0.04 6.4202 Al-Blewi et al. (2021)

4 C21 0.018 ± 0.0039 7.7447 Edukondalu et al. (2021)

5 C22 0.10 ± 0.028 7 Edukondalu et al. (2021)

6 C68 0.074 ± 0.017 7.1307 Romagnoli et al. (2016)

7 C69 0.0015 8.8239 Romagnoli et al. (2016)

8 C70 0.0034 8.4685 Romagnoli et al. (2016)

9 C71 0.0007 9.1549 Romagnoli et al. (2016)

(Continued on following page)
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Toxicity prediction

The toxicity of the compounds was determined using
ProTox-11 (Banerjee et al., 2018). With the help of this tool,
the toxicity of compounds can be freely estimated by inserting
the name of the compound or by simply writing its canonical
smiles. The 2-Dimensional structure of the compound is used as
input for this webserver. ProTox-11 is distributed in different
classes depending on the toxicity such as Organ toxicity,

immunotoxicity, carcinogenicity, cytotoxicity, and
mutagenicity.

Geometry optimization and reactivity
determination

The DFT calculations were performed using Gauss view 06 and
Gaussian. The 2D structure of the molecule was drawn by using

TABLE 2 Binding energy values in kcal/mol.

Proteins PDB IDs

Compounds 4ZVM 5NWH 7CHM 3HY3 4UUD 3PP0

C6 −10.3 −8.7 −9.4 −8.1 −8.8 −7.6

C7 −7.2 −6.2 −8.6 −8.2 −6.4 −10.0

C10 −7.9 −7.8 −10.5 −9.0 −8.0 −8.1

C21 −8.3 −7.8 −9.2 −9.7 −9.1 −7.2

C22 −8.9 −7.5 −9.2 −8.7 −8.8 −9.0

C68 −6.6 −5.9 −8.3 −6.6 −5.4 −8.3

C69 −6.2 −6.1 −7.6 −6.7 −5.1 −7.6

C70 −6.6 −5.8 −8.1 −6.9 −5.2 −8.1

C71 −6.1 −5.9 −7.5 −6.1 −5.1 −7.5

C74 −6.1 −6.1 −7.6 −6.4 −5.3 −7.6

C75 −6.2 −6.6 −8.3 −6.1 −6.5 −8.3

C76 −7.5 −6.9 −8.9 −8.5 −6.2 −10.3

References −6.8 −6.2 −7.9 −8.2 −6.1 −6.6

TABLE 1 (Continued) Active compounds obtained after the 3D-QSAR model development.

Sr No Compounds Structure IC50 (µM) PIC50 References

10 C74 0.23 6.6382 Romagnoli et al. (2016)

11 C75 0.0046 8.3372 Romagnoli et al. (2016)

12 C76 6.4 ± 0.18 8.1938 Khayyat et al. (2021)
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Perkin-Elmer ChemDraw and then converted into a 3D structure
through the Chem3D software. Geometrical optimization was done
with B3LYP (an exchange-correlation function) and basic sets of 6-
311G (Türker et al., 2010). The reactivity and stability of the
compound were determined by calculating the energy gap
between the HOMO-LUMO orbitals.

Results and discussion

3D-QSARmodeling on imidazole derivatives

Conformation hunt and pharmacophore
generation

A three-dimensional structure-activity relationship (3D-QSAR)
was performed to throwmore light on a series of imidazoles. For this
purpose, a conformational hunt was carried out on these
compounds (C1-C84). (Alam and Khan, 2017). The three-
dimensional pattern of field points (Figure 4) was identified by
illustrating the derived conception of bioactive conformation with
its calculated field points. Four distinct molecular fields were
calculated, namely, negative and positive electrostatic potential,
hydrophobicity, and shape/van der Waal descriptors. To draw a
pharmacophore template resembling the bioactive conformation
(for further virtual screening), a molecular field-based similarity
approach was employed.

Figure 4 shows that the compounds with similar filed points
bind at the same target site. This characteristic provides a linear
correlation between biological activity and structural similarity of
ligands (Low et al., 2005). Based on the parameter, Figure 4 shows
the active ligands, and their similarity metric was found within the
range of 56% to 42%.

Alignment and development of the 3D-QSAR
model

The ligand alignment in the protein context is required to use
the 3D similarity metric for activity atlas model development. To
ensure accurate model development, this alignment must be
inspected. The compounds in the training set were aligned to
ensure that the molecules being compared were in the same
relative orientation (Figure 5). This alignment is necessary
because molecules can adopt different conformations or spatial
arrangements due to the freedom of rotation around single
bonds. After it, the 3D-QSAR model was built by using the Field
points-based descriptors. The activity interactive graph plot was
used to represent the fitness of the derived 3D-QSAR model. This
graph displays the comparison between predicted and actual activity

with cross-validation data points. Fairly good activity-descriptors’
relationship accuracy of 81% was achieved by the derived 3D-QSAR
model as the regression coefficient was r2 = 0.81. Similarly, as
mentioned by the cross-validation regression coefficient (q2 =
0.51), a high activity-prediction accuracy of 51% was attained.
The derived 3D-QSAR model was proved to be very reliable to
predict the anticancer and cytotoxic activity of imidazole derivatives
as an MCF7 cell-line inhibitor (Table 1).

Figure 5 shows that there were displayed little spaces in ligands
to accommodate small conformation changes and variations of
moieties present in aligned molecules. High molecules have tight
alignment to restrict the substitution or replacement of any group
present in them. Low-active molecules, in comparison, lack steric
tightness and have the capacity to substitute any moiety in the
context of an activity enhancer (Low et al., 2005).

The regulation of the SAR mechanism of
imidazole derivatives by field points

The identification of field points (coefficient and
variance) governing the anticancer activity

The QSAR model was also viewed in a 3D form to unveil the
structure-activity relationship (SAR) mechanism of imidazole
derivatives. The field points named coefficient and variance
(associated with the bioactivity of training set compounds) were
analyzed in a 3D structural form for the purpose. The derived model
points for QSAR were contrasted with the reference compound for
better comprehension of space field point localization (Alam and
Khan, 2014). In a robust model, the high coefficient and variance
field points were proved to be the highly essential correlating
parameters. According to the results, electrostatic and steric
coefficients both play a major role in modulating the anticancer
activity as represented by the large size of red, cyan, green, and pink
field points (Figure 6). Field points containing high steric and
electrostatic variance indicated regions of high changes while the
field points containing low variance represented the regions with less
changes or no changes (Figure 6).

Field contribution in activity prediction
“View field contributions to predicted activity” study was done

on imidazole derivatives. This evaluates the extent to which
imidazole derivatives fit the derived field-based 3D-QSAR model
and regions of structural field points governing the predicted
activity. These field contributions (Figures 6A, B) were
represented by purple, blue, and red color regions. According to
the results, the orange- and purple-colored areas denote the region

TABLE 3 Toxicity risk parameters.

Compounds Hepatotoxicity Carcinogenicity Immunotoxicity Mutagenicity Cytotoxicity

C6 −0.60 −0.61 −0.99 +0.54 −0.86

C10 −0.54 −0.51 −0.99 −0.55 −0.71

C21 +0.56 +0.5 +0.85 +0.66 −0.56

C76 +0.62 +0.55 −0.99 +0.62 −0.86
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of electrostatics and steric field points, respectively, having the
negative regulation capability on predicted activity (decrease
anticancer activity). Whereas the green- and zinc-colored areas

denote the regions of electrostatics and steric field points,
respectively, with a positive regulation capability on the predicted
activity (increased anticancer activity).

FIGURE 6
(A) Coefficients and variance field points of Fulvestrant; (a) Electrostatic coefficient; (b) Electrostatic variance; (c) Steric coefficients; (d) Steric
variance; (e) Field contributions to the predicted activity. (B) Field contributions to the predicted activity.
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Activity-atlas visualization for SAR mechanism
identification

SAR study was practiced through the activity-atlas
visualization technique and was used to unveil the key features
of imidazole, regulating the anticancer activity and designing
more novel drugs. For this purpose, an activity cliffs summary

and an average of actives study were performed on imidazole
derivatives.

Average of actives model
On the basis of this model, imidazole compounds having a pIC50

value higher than 6.4 were classified as active compounds while the

FIGURE 7
(A) Positive and negative electrostatic regions (B) The hydrophobic interaction regions of active compounds.
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rest of the compounds were considered inactive. This model
(Figure 7; Fig. S1) represents the areas of high activity that
reference drugs and active ligands have in common.

In Figure 7A, the positive and negative electrostatic regions
represented by the red color sites and cyan color sites,
respectively, correlate with the anticancer activity, i.e., more of

FIGURE 8
(A) Cliff summary of electrostatics. (B) The areas of favorable and unfavorable hydrophobics. (C) Favourable shape region and unfavorable shape
region.
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these regions indicate more anticancer activity. Figure 7B shows
the hydrophobic interaction regions of active compounds as
indicated by the yellow color, and Supplementary Figure S1
shows the shape regions of active compounds as represented
by the white color.

Activity cliff summary
The activity cliff summary diagrams as indicated by Figure 8A

correlate with the biologically active parts of imidazole drugs with
the reference drug. The cliff summary of electrostatics in Figure 8A
is visualized in two colors: red and cyan. The presence of the red
color indicating the positive electrostatic field and the cyan color
indicating the negative electrostatic field is favorable for high
anticancer activity. Figure 8B shows the areas of favorable and
unfavorable hydrophobics represented by the green and purple
colors, respectively. Whereas in Figure 8C, the green color shows
a favorable shape region, and the purple color shows an unfavorable
shape region.

Regions explored
The descriptive features of compounds were explored in this

model aside from their biological activities (Attiq et al., 2022). The
more red and cyan colors indicating positive and negative fields,
respectively, show the areas of strong SAR with the reference drug.
The average regions explored also represent the areas of active
compounds that would not take part in an anticancer activity
(Figure 9).

Validation of the 3D-QSAR model
Molecular characteristics regulating the active compounds as

anticancer agents were retrieved for further prediction of their
anticancer activity based on derived SAR models. Before that,
prediction performance was analyzed on the test set and training
set compounds by predicting their anticancer activity. This
prediction was done by means of derived models and then the
distance value (error) was compared. In order to perform the
comparison, predicted activity and distance to models’ columns

were examined for each derived model. The important ligand
fields were illustrated for each derived model through this study
and after that, these characteristics were utilized for virtual
screening.

Ligand-based virtual screening

To predict hits, a series of ligand-based virtual screening
experiments were performed. Only high-hit compounds were
selected having the value of ‘excellence’. The excellence of hits
was set by taking a threshold of docking score −8.7 kcal/mol to
compare the biological activity. The predicted activities were
expected to be reliable because most of the characteristics in
compounds were the same as the training set. In contrast,
compounds having poor field point similarities were excluded to
evade the false positive compounds by ineffective predicted
activities. Also, the derived QSAR model was used to predict the
hit compounds for anticancer activity (Lakshmithendral et al.,
2019b).

Structure-based virtual screening (SBVS)
SBVS of selected compounds was performed to discover new

valuable drugs in order to treat breast cancer (El Aissouq et al.,
2021). AutoDock Tools provided notable results with overall
binding energy of all the selected compounds ranging
from −5.1 to −10.5 kcal/mol. Most of the compounds have
binding free energy greater than the reference compound
Fulvestrant when observed with all the selected proteins as
shown in Table 2.

The docking results explain that compounds C6, C10, C21, and
C76 are the most hit compounds giving excellent results, so only
these compounds will be subjected to further study.

Molecular Interaction and Binding Mode. The top hit
compounds represented by the shaded area in Table 2 were
selected to evaluate the binding site interactions between the
ligand and the target protein.

FIGURE 9
Regions explored for Fulvestrant by active molecules in the activity atlas model. (A) Regions explored in negative electrostatics, (B) Regions explored
in positive electrostatics, (C) Regions explored in Hydrophobic, and (D) Shape explored.
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FIGURE 10
(A) Molecular docking of compound C6 with PDB ID: 4ZMV; (a) 3D view of the best-selected conformation, (b) 2D Interactions, (c) Ligand
interactions, and (d) Hydrophobicity. (B)Molecular docking of compound C76 with PDB ID: 3PP0 (a) 3D view of the best-selected conformation. (b) 2D
Interactions. (c) Ligand interactions. (d) Hydrophobicity.
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FIGURE 11
A 3-dimensional view of the best-docked pose of the ligand that fitted into the binding pocket of the protein receptor binding site.

FIGURE 12
RMSF profiles of (A) H3Y3, (B) 4UUD, and (C) 7CHM.
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Compound C6 was fixed in the binding pocket of protein (PDB
ID: 4ZVM) (Figure 10A) by undergoing electrostatic interactions
(Pi-Anion) with GLU193 and hydrophobic interactions (Pi-Sigma,
Pi-Pi Stacked, and Alkyl) with PHE17, TYR104, and PRO192
(Supplementary Table S3).

The docking of compound C6 with protein (PDB ID: 5NWH)
is described in Supplementary Figure S2. C6 undergoes
interactions with the protein by hydrophobic interactions (Pi-
Sigma and Pi-Alkyl) with VAL 49, VAL29, and PRO86, Pi-Cation
electrostatic interactions with ARG196, and other interactions (Pi-
Sulfur) with CYS91 (Supplementary Table S3).

Supplementary Figure S3 describes the docking of compound
C10 with the protein having PDB ID: 7CHM. The compound fits
in the binding pocket of the protein through hydrogen bonding
(Conventional Hydrogen Bond and Carbon Hydrogen Bond) with
amino acids ASP608, SER611, GLN530, ASP674, and ILE607;
hydrophobic interactions (Pi-Sigma, Pi-Pi Stacked, Alkyl, and
Pi-Alkyl) with ILE531, ILE607, LEU654, ALA651, PRO673,
VAL539, ILE663, and ALA551; and miscellaneous interactions
(Pi-Sulfur) with MET602, CYS604, and MET671 (Supplementary
Table S4).

However, the docking of compound C21 with PDB ID: 3HY3
provided different results (Supplementary Figure S4). C10
interacted by forming a conventional hydrogen bond with
TRP109 and hydrophobic interactions (Pi-Pi Stacked, Pi-Pi
T-shaped, Alkyl, and Pi-Alkyl) with TYR83, TRP109, PRO81,

MET90, TYR152, TYR153, and LYS150 (Supplementary Table
S4) (Elancheran et al., 2023a).

Compound C21 fits in the binding pocket of protein (PDB ID:
4UDD) (Supplementary Figure S5) through hydrogen bonding
(conventional hydrogen bond and carbon-hydrogen bond) with
GLN642, GLN738, and PRO637, hydrophobic interactions (Pi-Pi
Stacked) with TRP557 and TYR735, and miscellaneous interactions
(Pi-Sulfur) with MET745 (Supplementary Table S2). Docking
results of Compound C76 with PDB ID: 3PP0 are described in
Figure 10B. C76 interacted by forming conventional hydrogen bond
with LYS753 and hydrophobic interactions (Pi-Sigma and Pi-Alkyl)
with LEU726, VAL734, THR798, LEU852, ALA751, and LYS753
(Supplementary Table S2).

Validation of docking

The re-docking of the native ligand with the protein receptor
binding site was performed to validate the docking process by using
the PyMOL molecules graphic system, version 2.4.1. The crystal
structures were aligned to compare their changes in conformation
and displacement. The results were reported in root-mean-squared
deviation (RMSD) to calculate the deviation between analogous
atoms of two proteins, i.e., the docked pose and the corresponding
crystal conformer. Redocking of all hit compounds with PDB IDs
4ZVM, 5NWH, 7CHM, 3HY3, 4UUD, and 3PP0 resulted in the

FIGURE 13
Deformability and B-factor of docked complexes. (A) 3HY3-C10, (B) 4UUD-C10, and (C) 7CHM-C10.
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RMSD values shown in Supplementary Table S5. The lower value of
RMSD revealed that the ligands were bound to target very closely to
the original conformation, hence, signifying the accuracy of results.
The RMSD value close to zero was considered to be ideal. A
superimposed view is displayed in Figure 11.

Molecular dynamics simulation
The RMSF graph provides insight into the flexibility of

individual atoms or residues in the protein. It shows how much
they deviate from their average positions during the simulation. The
maximum value of RMSF indicates greater flexibility, while the

FIGURE 14
Eigenvalue and variance of docked complexes (A) 3HY3-C10, (B) 4UUD-C10, and (C) 7CHM-C10.

FIGURE 15
Covariance matrix of complexes (A) 3HY3-C10, (B) 4UUD-C10, and (C) 7CHM-C10.
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smallest value denotes the system’s restricted motion across the
simulation course. In all of our proteins, the RMSF graph showed a
number of areas having high flexibility (Figure 12). The complex of
C10 with H3Y3 showed a maximum number of peaks, indicating
more flexible movements. All three docked complexes showed a
maximum RMSF of 1.0. It indicated that the atoms or residues are,
on average, deviating from their average positions by around 1 Å
(Angstrom).

The B-factor, eigenvalue, deformability, covariance matrix,
variance map, and elastic network model of the protein serves as

a representation of its stability. The mobility characteristics of
the docked proteins are determined by the deformability and
B-factor. The peaks are associated with the protein regions with
deformability whereas the areas with the highest peaks are those
with the greatest deformability (Santra and Maiti, 2022). In
B-factor graphs, the comparison between the PDB field and
NMA of the docked complexes is provided. The B-factor
graphs of 3H3Y-C10 and 7CHM-C10 complexes showed that
the PDB data predicted higher B-factors compared to the NMA
data. It suggested that the B-factor values predicted by the

FIGURE 16
Elastic maps of docked proteins (A) 3HY3-C10, (B) 4UUD-C10, and (C) 7CHM-C10.

FIGURE 17
(A) FMOs of C6 along with energy gap (ΔE), (B) MEP structure and scale of C6 based on SCF energy, and (C) Optimized geometry of C6.
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FIGURE 18
(A) FMOs of C10 along with energy gap (ΔE), (B) MEP structure and scale of C10 based on SCF energy, (C) Optimized geometry of C10.

FIGURE 19
(A) FMOs of C21 along with energy gap (ΔE), (B) MEP structure and scale of C21 based on SCF energy, and (C) Optimized geometry of C21.
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computational simulations using NMA showed lower mobility
or flexibility than what was predicted by the experimentally
determined B-factor values from the Protein Data Bank.
Figure 13 illustrates the deformability and B-factor of 3HY3-
C10, 4UUD-C10, and 7CHM-C10, respectively.

The eigenvalue indicates motion stiffness which is directly
connected to the energy needed to deform the structure. If the
eigenvalue is low, it means that the complex is more easily
deformable. The eigenvalues of 3H3Y, 4UUD, and 7CHM
complexes with C10 are 3.231587e-04, 7.624966e-05, and
2.479516e-04, repectively. It means that all of our docked
complexes showed low eigenvalues, indicating a considerable
amount of deformability and, hence, good flexibility and stability
of the molecular motion. The individual variance is shown by
purple-shaded bars in the variance graph of C10 with target
proteins, while the bars with green shading show cumulative
variance. The eigenvalue and variance graphs of protein-ligand
complexes (H3Y3-C10, 4UUD-C10, and 7CHM-C10) are shown
in Figure 14.

The covariance matrix indicates correlations among the pairs
of residues in a protein-ligand complex (Figure 15). The red and
white colors showed correlated and uncorrelated motion,
respectively, while anticorrelations are represented by the blue
color. Greater correlation means the formation of a better
complex. The covariance matrices for H3Y3-C10, 4UUD-C10,
and 7CHM-C10 complexes exhibited good correlations and
minimal anticorrelations.

The elastic network model of docked proteins shows
relationships between the atoms where the stiffer regions are
indicated by the darker grey areas (Figure 16). All protein elastic
maps yielded reliable results.

Toxicity prediction
Toxicity results provided valuable information related to the

toxicological profile of selected compounds after molecular docking
studies and thus may be useful for drug designing (to select the
dosage and preferred route of administration (Banerjee et al., 2018).
However, all these results are preliminary and must be confirmed by
experiment (Table 3).

As shown in Table 3, among all the hit compounds, C10 was
found to be inactive in all toxicity parameters and, thus, it was
considered the best-hit compound.

Density functional theory

Frontier molecular orbitals
Very useful information about the compounds can be provided by

Frontier molecular orbitals (FMO) such as electronegativity, stability,
reactivity, and chemical hardness and softness (Elancheran et al.,
2023b). The HOMO and LUMO parameters are used to compute
the chemical reactivity descriptors and to assess the molecular reactivity
(Al-Janabi et al., 2021). The energy values of HOMO and LUMO were
determined by the DFT method as shown in Supplementary Table S6.
Contour diagrams of FMOs are shown in Figures 17–20.

The geometry optimization was done to minimize the energy
and to find the most stable atomic arrangement. Optimized
geometries of all compounds are shown in Figures 17–20 along
with the numbering system and the vector of dipole moment.

Computational description
The DFT calculations for ionization energy, electron affinity,

energy gap, electronegativity, chemical potential, electrophilicity

FIGURE 20
(A) FMOs of C76 along with energy gap (ΔE), (B) MEP structure and scale of C76 based on SCF energy, and (C) Optimized geometry of C76.
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index, chemical softness and hardness, additional electronic charges,
maximum charger transfer index, and dipole moment were
performed as explained in Supplementary Table S6).

A high EHOMO indicates that the molecule is a strong electron
donor and can easily donate electrons to the receptor, increasing
biological activity. According to this concept, the activity ranking of
the hit compounds is given below with an increasing EHOMO value.

C10 > C21 > C76 > C6

A low ELUMO value indicates that the compound can easily
accept electrons from the donor molecule, increasing biological
activity (Mu and Gao, 2022). According to this criterion, an
increase in the biological activity of compounds is as follows:

C6 > C76 > C10 > C21

The third parameter is the energy gap (ΔE) between Homo and
Lumo. If the energy gap is small, it indicates that the molecule is soft,
biologically active, less stable, and has a high chemical reactivity. In
other words, the biological activity increases with a decrease in the
energy gap. The order of ranking should be

C21 > C10 > C76 > C6

A high chemical potential (CP) or Lower electronegativity X)
value indicates electron delocalization. It means that the molecule
can easily form bonds and coordinate easily with the biological
system. So according to our calculated DFT data, an increase in the
biological activity of compounds is given below:

C21 > C10 > C76 > C6

The dipole moment also affects the biological activity of the
compound. The high value of the dipole moment indicates the
strong ligand-protein interaction, thus increasing the biological
activity (Sayin and Üngördü, 2018). Supplementary Table S6

shows that the dipole moment of our hit compounds are in the
order of

C10 > C21 > C76 > C6

Molecular electrostatic potential (MEP)
In order to determine a chemical mechanism,MEPmaps andMEP

contours play a very important role. Molecular electrostatic potential
helps to determine the hydrogen bonding interactions and to interpret
the nucleophilic as well as electrophilic reactions (Horchani et al., 2020).
MEP can be used to indicate the shape of the molecule and the sizes of
the negative, positive, and neutral electrostatic potential. The molecular
structure of drugs along with the interaction among different
physicochemical properties can be predicted by the MEP scale (Al-
Janabi et al., 2021). The MEP of compounds C6, C10, C21, and C76 is
determined under the basis set of B3LYP/6-311G. The negative charge
is indicated by red and yellow areas that represent the electrophilic
attack sites. The green color indicated a neutral charge while the blue
region indicating the positively charged areas represented the
nucleophilic reactivity (Bendjeddou et al., 2016). The MEP structures
and MEP scales of compounds are shown in Figures 17–20.

Conclusion

After the virtual screening,C10was found to be the best imidazole
derivative clearing all the filters. The 3D-QSAR models generated in
this study provided valuable insights into the structural features and
molecular interactions that contribute to the compounds’ activity
against breast cancer cells. The derived PLS regression model
confirmed a fairly acceptable value of regression coefficient (r2 =
0.81) and cross-validation regression coefficient (q2 = 0.51). Docking
results based on the binding free energy values were found to support
the best-hit compounds. The DFT calculations also confirm the best
alternative cancer inhibitor. These predictions aided in rationalizing

Parameters C6 C10 C21 C76

EHOMO(EV) −5.6396 −5.9786 −5.9533 −5.6489

Elumo(EV) −1.2697 −2.41256 −2.4975 −2.068

ENERGY GAP ΔE (Ev) 4.3699 3.566 3.4558 3.5809

IONIZATION POTENTIAL (I = -EHOMO) 5.6396 5.9786 5.9533 5.6489

ELECTRON AFFINITY (A = -ELUMO) 1.2697 2.41256 2.4975 2.068

ELECTRONEGATIVITY (χ = (I+A)
2 ) (Ev) 3.4546 4.195 4.2254 3.8584

CHEMICAL POTENTIAL (Μ= -(I+A)2 ) (EV) −3.4546 −4.195 −4.2254 −3.8584

CHEMICAL HARDNESS (Η = (I−A)
2 ) (EV) 2.1849 1.78 1.7279 1.79

CHEMICAL SOFTNESS (S = 1
2η) (EV) 0.2288 0.28 0.2893 0.2793

ELECTROPHILICITY INDEX (Ω = µ2
2η) (EV) 2.731 4.94 5.1663 4.1584

NUCLEOPHILICITY INDEX (N = 1
ω) (EV) 0.366 0.2024 0.1936 0.2405

MAXIMUM CHARGER TRANSFER INDEX (ΔNMAX = −µ
η ) (EV) 1.581 2.3567 2.4454 2.155

DIPOLE MOMENT (DEBYE) 3.970092 7.126807 6.225672 4.797580
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the observed biological activities and potential mechanisms of action
of these compounds against breast cancer cells. MD simulation study
supported the docking results of C10 to its target proteins or
receptors. This study showcased the lead compound’s stability and
robustness, suggesting its suitability for further preclinical and clinical
evaluations. The compound’s favorable binding profile, coupled with
its ability to sustain its interactions over extended simulation periods,
instills confidence in its potential as a promising candidate for
subsequent stages of drug development. The results acquired from
the present study may be utilized in the future to develop more
imidazole-based therapeutics against cancer. The identification of
Compound C10 as a lead compound opens up avenues for further
drug development and optimization and offers valuable insights and
potential directions for future research and clinical applications.
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