67 research outputs found

    CD44 Upregulation in E-Cadherin-Negative Esophageal Cancers Results in Cell Invasion

    Get PDF
    E-cadherin is frequently lost during epithelial-mesenchymal transition and the progression of epithelial tumorigenesis. We found a marker of epithelial-mesenchymal transition, CD44, upregulated in response to functional loss of E-cadherin in esophageal cell lines and cancer. Loss of E-cadherin expression correlates with increased expression of CD44 standard isoform. Using an organotypic reconstruct model, we show increased CD44 expression in areas of cell invasion is associated with MMP-9 at the leading edge. Moreover, Activin A increases cell invasion through CD44 upregulation after E-cadherin loss. Taken together, our results provide functional evidence of CD44 upregulation in esophageal cancer invasion

    Differentiation of normal and cancer cells induced by sulfhydryl reduction: biochemical and molecular mechanisms

    Get PDF
    We examined the morphological, biochemical and molecular outcome of a nonspecific sulfhydryl reduction in cells, obtained by supplementation of N-acetyl-L-cysteine (NAC) in a 0.1-10 mM concentration range. In human normal primary keratinocytes and in colon and ovary carcinoma cells we obtained evidences for: (i) a dose-dependent inhibition of proliferation without toxicity or apoptosis; (ii) a transition from a proliferative mesenchymal morphology to cell-specific differentiated structures; (iii) a noticeable increase in cell-cell and cell-substratum junctions; (iv) a relocation of the oncogenic beta-catenin at the cell-cell junctions; (v) inhibition of microtubules aggregation; (vi) upregulation of differentiation-related genes including p53, heat shock protein 27 gene, N-myc downstream-regulated gene 1, E-cadherin, and downregulation of cyclooxygenase-2; (vii) inhibition of c-Src tyrosine kinase. In conclusion, a thiol reduction devoid of toxicity as that operated by NAC apparently leads to terminal differentiation of normal and cancer cells through a pleiade of converging mechanisms, many of which are targets of the recently developed differentiation therapy

    Dvl2-Dependent Activation of Daam1 and RhoA Regulates Wnt5a-Induced Breast Cancer Cell Migration

    Get PDF
    The Dishevelled (Dvl) and Dishevelled-associated activator of morphogenesis 1 (Daam1) pathway triggered by Wnt5a regulates cellular polarity during development and tissue homoeostasis. However, Wnt5a signaling in breast cancer progression remains poorly defined.We showed here that Wnt5a activated Dvl2, Daam1 and RhoA, and promoted migration of breast cancer cells, which was, however, abolished by Secreted Frizzled-related protein 2 (sFRP2) pretreatment. Dominant negative Dvl2 mutants or Dvl2 siRNA significantly decreased Wnt5a-induced Daam1/RhoA activation and cell migration. Ectopic expression of N-Daam1, a dominant negative mutant, or Daam1 siRNA remarkably inhibited Wnt5a-induced RhoA activation, stress fiber formation and cell migration. Ectopic expression of dominant negative RhoA (N19) or C3 exoenzyme transferase, a Rho inhibitor, decreased Wnt5a-induced stress fiber formation and cell migration.Taken together, we demonstrated for the first time that Wnt5a promotes breast cancer cell migration via Dvl2/Daam1/RhoA
    • …
    corecore