408 research outputs found

    Linear dependence of peak width in \chi(\bq, \omega) vs T_c for YBCO superconductors

    Full text link
    It is shown that the momentum space width of the peak in the spin susceptibility, Imχ(q,ω)\chi(q,\omega), is linearly proportional to the superconducting TcT_c: Tc=vΔqT_c = \hbar v^*\Delta q with v35meV\hbar v^* \simeq 35 meV\AA. This relation is similar to the linear relation between incommensurate peak splitting and TcT_c in LaSrCuO superconductors, as first proposed by Yamada et al. (Phys. Rev. B 57, 6165, (1998)). The velocity v\hbar v^* is smaller than Fermi velocity or the spin-wave velocity of the parent compound and remains the same for a wide doping range. This result points towards strong similarities in magnetic state of YBCO and LaSrCuO.Comment: 5 pages, 3 figures, latex fil

    High-Energy Spin Dynamics in La1.69_{1.69}Sr0.31_{0.31}NiO4_4

    Full text link
    We have mapped out the spin dynamics in a stripe-ordered nickelate, La2x_{2-x}Srx_{x}NiO4_{4} with x0.31x \simeq 0.31, using inelastic neutron scattering. We observe spin-wave excitations up to 80 meV emerging from the incommensurate magnetic peaks with an almost isotropic spin-velocity: cs0.32\hbar c_s\sim 0.32 eV \AA, very similar to the velocity in the undoped, insulating parent compound, La2_{2}NiO4_{4}. We also discuss the similarities and differences of the inferred spin-excitation spectrum with those reported in superconducting high-TcT_c cuprates.Comment: 4 figure

    Testing of a novel web browser interface for the Chinese market

    Get PDF
    This paper compares the perspicacity, appropriateness and preference of web browser icons from leading software providers with those of a culture-specific design. This online study was conducted in Taiwan and involved 103 participants, who were given three sets of web browser icons to review, namely Microsoft Internet Explorer, Macintosh Safari, and culturally specific icons created using the Culture-Centred Design methodology. The findings of the study show that all three sets have generally high recognition rates, but that some icon functions (e.g. Go/Visit and Favourite) in all three sets have poor recognition rates and are considered inappropriate

    Double dispersion of the magnetic resonant mode in cuprates

    Full text link
    The magnetic excitation spectra in the vicinity of the resonant peak, as observed by inelastic neutron scattering in cuprates, are studied within the memory-function approach. It is shown that at intermediate doping the superconducting gap induces a double dispersion of the peak, with an anisotropy rotated between the downward and upward branch. Similar behavior, but with a spin-wave dispersion at higher energies, is obtained for the low-doping case assuming a large pairing pseudogap.Comment: 4 LaTeX pages, 4 figure

    Magnetic excitations in multiferroic LuMnO3 studied by inelastic neutron scattering

    Full text link
    We present data on the magnetic and magneto-elastic coupling in the hexagonal multiferroic manganite LuMnO3 from inelastic neutron scattering, magnetization and thermal expansion measurements. We measured the magnon dispersion along the main symmetry directions and used this data to determine the principal exchange parameters from a spin-wave model. An analysis of the magnetic anisotropy in terms of the crystal field acting on the Mn is presented. We compare the results for LuMnO3 with data on other hexagonal RMnO3 compounds.Comment: 7 pages, 8 figures, typo correcte

    High energy spin excitations in YBa_2 Cu_3 O_{6.5}

    Full text link
    Inelastic neutron scattering has been used to obtain a comprehensive description of the absolute dynamical spin susceptibility χ(q,ω)\chi'' (q,\omega) of the underdoped superconducting cuprate YBa_2 Cu_3 O_{6.5} (Tc=52KT_c = 52 K) over a wide range of energies and temperatures (2meVω120meV2 meV \leq \hbar \omega \leq 120 meV and 5KT200K5K \leq T \leq 200K). Spin excitations of two different symmetries (even and odd under exchange of two adjacent CuO_2 layers) are observed which, surprisingly, are characterized by different temperature dependences. The excitations show dispersive behavior at high energies.Comment: 15 pages, 5 figure

    Observation of Magnetic Order in a YBa2Cu3O6.6{\rm YBa_2Cu_3O_{6.6}} Superconductor

    Full text link
    Polarized beam neutron scattering measurements on a highly perfect crystal of YBa2Cu3O6.6{\rm YBa_2Cu_3O_{6.6}} show a distinct magnetic transition with an onset at about 235K, the temperature expected for the pseudogap transition. The moment is found to be about 0.1 μB\mu_B for each sublattice and have a correlation length of at least 75 \AA. We found the critical exponent for the magnetic neutron intensity to be 2β\beta =0.37±\pm 0.12. This is the proper range for the class of transition that has no specific heat divergence possibly explaining why none is found at the pseudogap transition.Comment: 3 figure

    Quantum Impurities and the Neutron Resonance Peak in YBa2Cu3O7{\bf YBa_2 Cu_3 O_7}: Ni versus Zn

    Full text link
    The influence of magnetic (S=1) and nonmagnetic (S=0) impurities on the spin dynamics of an optimally doped high temperature superconductor is compared in two samples with almost identical superconducting transition temperatures: YBa2_2(Cu0.97_{0.97}Ni0.03_{0.03})3_3O7_7 (Tc_c=80 K) and YBa2_2(Cu0.99_{0.99}Zn0.01_{0.01})3_3O7_7 (Tc_c=78 K). In the Ni-substituted system, the magnetic resonance peak (which is observed at Er_r \simeq40 meV in the pure system) shifts to lower energy with a preserved Er_r/Tc_c ratio while the shift is much smaller upon Zn substitution. By contrast Zn, but not Ni, restores significant spin fluctuations around 40 meV in the normal state. These observations are discussed in the light of models proposed for the magnetic resonance peak.Comment: 3 figures, submitted to PR

    Collective Modes in the Loop Current Ordered Phase of Cuprates

    Full text link
    Recently two branches of weakly dispersive collective modes have been discovered in under-doped cuprates by inelastic neutron scattering. Polarization analysis reveals that the modes are magnetic excitations. They are only visible for temperatures below the transition temperature to a broken symmetry phase which was discovered earlier and their intensity increases as temperature is further decreased. The broken symmetry phase itself has symmetries consistent with ordering of orbital current loops within a unit-cell without breaking translational symmetry. In order to calculate the collective modes of such a state we add quantum terms to the Ashkin-Teller (AT) model with which the classical loop current order has been described. We derive that the mean field ground state of the quantum model is a product over all unit-cells of linear combination of the four possible classical configurations of the loop current order in each unit-cell. The collective modes are calculated by using a generalized Holstein-Primakoff boson representation of orbital moment operators and lead to three branches of gapped weakly dispersive collective modes. The experimental results are consistent with the two lower energy branches; the third mode is at a higher energy than looked for by present neutron scattering experiments and might also be over-damped. Implications of the discovery of the collective modes are discussed.Comment: 16 pages, 6 figure

    Quantum statistics of interacting dimer spin systems

    Get PDF
    The compound TlCuCl3 represents a model system of dimerized quantum spins with strong interdimer interactions. We investigate the triplet dispersion as a function of temperature by inelastic neutron scattering experiments on single crystals. By comparison with a number of theoretical approaches we demonstrate that the description of Troyer, Tsunetsugu, and Wurtz [Phys. Rev. B 50, 13 515 (1994)] provides an appropriate quantum statistical model for dimer spin systems at finite temperatures, where many-body correlations become particularly important
    corecore