4,661 research outputs found

    Skylab M518 multipurpose furnace convection analysis

    Get PDF
    An analysis was performed of the convection which existed on ground tests and during skylab processing of two experiments: vapor growth of IV-VI compounds growth of spherical crystals. A parallel analysis was also performed on Skylab experiment indium antimonide crystals because indium antimonide (InSb) was used and a free surface existed in the tellurium-doped Skylab III sample. In addition, brief analyses were also performed of the microsegregation in germanium experiment because the Skylab crystals indicated turbulent convection effects. Simple dimensional analysis calculations and a more accurate, but complex, convection computer model, were used in the analysis

    Fast algorithms for min independent dominating set

    Full text link
    We first devise a branching algorithm that computes a minimum independent dominating set on any graph with running time O*(2^0.424n) and polynomial space. This improves the O*(2^0.441n) result by (S. Gaspers and M. Liedloff, A branch-and-reduce algorithm for finding a minimum independent dominating set in graphs, Proc. WG'06). We then show that, for every r>3, it is possible to compute an r-((r-1)/r)log_2(r)-approximate solution for min independent dominating set within time O*(2^(nlog_2(r)/r))

    Oleomargarine Industry

    Get PDF

    Cost Plan for Automobile-Rental Business

    Get PDF

    Physical forces influencing Skylab experiments M551, M552, and M553

    Get PDF
    The forces concerned with metals melting, exothermic brazing, and sphere forming experiments on Skylab 1 mission are reported. The conclusions reached are that no significant practical differences exist between terrestrial and microgravity electron beam melting, and braze gap clearances are far less critical to joining operations in space than on earth. Altered microstructures, increased grain refinement, and the appearance of a single, large interior shrinkage pore were found in the Skylab specimens

    Convection effects on Skylab experiments M551, M552, and M553, phase C report

    Get PDF
    This report described an analysis of Skylab Experiments M551 (Metals Melting), M552 (Exothermic Brazing), and M553 (Sphere Forming). The primary objective is the study of convection in the molten metals and their attendant solidification theory. Particular attention is given to clarifying the effects of reduced gravity on molten metal flow and solidification. Based on an analysis of physical forces and solidification theory expected for ground-based and Skylab processing, low-g variations were predicted for each experiment. A comparison was then made with the Skylab results available to date. Both metallurgical analyses of other investigators and movies of ground-based and Skylab samples were utilized. Several low-g variations in Skylab processed materials were successfully predicted based on expected variations in physical forces and fluid convection. The same analysis also successfully predicted several features in the Skylab-processed materials which were identical to terrestrially-processed materials. These results are summarized in the conclusion section for each experiment
    corecore