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FOREWORD

This report was prepared for the National Aeronautics and Space
Administration, Marshall Space Flight Center, as a final report on Con-
tract NAS8-27015, This report describes an evaluation of natural con-
vection in the microgravity of Skylab and its effects on space processing
experiments M556, M559, M560 and M562. The work was performed in the
Space Processing Group of the Lockheed-Huntsville Research & Engineering
Center,

The NWASA Contracting Officer's Representative was B. R, Facemire,
MSFC Space Science Laboratory.
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Section 1
INTRODUCTION AND SUMMARY

At the request of the principial investigators for Skylab experiments
M556 "Vapor Growth of IV-VI Compounds'" (H, Wiedemeier, Renssaeler
Polytechnic Institue) and M560 "Growth of Spherical Crystals" (H. U. Walters,
University of Alabama in Huntsville), an analysis was performed of the con~
vection which existed on ground tests and during Skylab processing of these
experiments, A parallel analysis was also performed on Skylab experiment
M562 "Indium Antimonide Crystals" (H. Gatos, Massachusetts Institute of
Technology)} because indium antimonide (InSb) was used and a free surface
existed in the tellurium-doped Skylab III sample. In addition, brief analyses
were also performed of the M559 "Microsegregation in Germanium' (J. T. Yue,
Texas Instruments) because the Skylab crystals indicated turbulent convection

effects,

By utilizing simple dimensional analysis calculations or a more accurate,

but complex, convection computer model, it is shown that:

e Neither thermogravitational, g-jitter or thermoacoustic con-
vection can account for the unexpected, order-of -magnitude
increase in mass transport rate observed in Ge 14 experiment
M556, Skylab Case 3A.

e Turbulent convection existing during Skylab experiment M559
"Microsegregation in Geranium' was definitely caused by
thermocapillary forces as predicted from theory both by di-
mensional analysis and by a convection model.

® TFrom theoretical considerations, both indiume-antimonide
experiments M560 and M562 should have exhibited substan-
tial thermocapillary convection, but did not due to probable
oxide film interference {or opposing solutal effects).

The most important, and baffling, of these results is the rather obvious

conflict between experiment and theory for the indium-antimonide experiments.
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The correct explanation for the suppression of thermocapillary convection

in these space grown, melt crystals is critically important because it could
lead to containerless, diffusion controlled growth of such importait materials
as silicon, germenium and aluminum oxide. It is baffling because theory so
strongly predicts significant thermocapillary convection (Marangoni numbers
greater than 1000), yet the apparent lack of convective effects in the space
grown crystals is also sirongly evident. It is also paradoxical because of
the agreement between experimental evidence and theory for the germanium

experiment.

It should be noted that no significant deficiencies exist in the theory or
analysis techniques utilized in assessing the M560 and M562 experiments. It
is, however, the lack of data on physical properties (see Appendices B and C)
and the rather limited time and resources allotted to this assessorent which
do not presently allow the complete resolution of the conflicting experimental

and theoretical results.

By conducting the preceding analysis, it has been shown that rigorous
convection sensitivity and/or convection modeling analyses, in conjunction
with measurement or prediction of capillary effects, need to be applied to
all space processing flight experiments hefore final designs are chosen if

convection suppression is desired,

The following sections contain descriptions of: dimensional analysis
utilized to estimate convection expected on Earth versus Skylab; results of
computer program models to determine convective flow patterns and heat
and mass transport rates; comparison of theoretical and experimental re-
sults; and recommendations of further work required to resolve the present

difference in experimental and theoretical results.
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Section 2
CONVECTION SENSITIVITY

A simple, reliable estimate of whether convection exists, and its
strength, can be obtained from dimensional analysis. This is especially true
for thermogravitational flows which have been studied extensively (both theo
retically and experimentally) for the past 30 years (Ref, 1), The analysis of
thermocapillary flows, however, is not as extensive due to the difficulty of
suppressing the usually dominant buoyancy forces during terrestrial experi-
ments, The following sections describe:; an analysis of the magnitude of
thermogravitational convection expected in Skylab and ground testing; thermo-
capillary convection expected in Skylab; and a means for estimating mass

transfer effects via heat and mass transfer analogies,

2,1 Thermogravitational Dimensional Analysis

A schematic of the M556 e 14 process is shown in Fig. 1, The pressure
of the Ge I, gas was determined by utilizing an ideal gas and the mean tempera-
ture in the container (470°C). A schematic typical of the M560 and M562 InSb
processes are shown in Fig. 2. Dimensional analysis of these configurations
requires that values of the Rayleigh and Marangoni numbers be calculated for
both terrestrial and Skylab conditions and then compared to the critical
Rayleigh and Marangoni numbers. The aspect ratio (length-to-diameter) and
Prandtl number of the processes are also important parameters, Ignoring
the Marangoni effect for the present, the dimensional analysis for buoyancy

convection is presented in this section.

o Ge 14 Experiment

For heating from below or above {vertical processing) the Rayleigh

number is defined as:
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Fig. 1 - Skylab M556 Gel, Processing Parameters

4

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC TR D496534

3
(Thot ~ Tcarqy

va

Ra.L =fg

where

B = thermal expansion coefficient (1.35 - 10'3/00)
g = gravity level (cm/secz)

¥ = kinematic viscosity (1.6 = 10~ 2.'c:mz/sec)

o = thermal diffusivity (1.35 - 10-Zcm2/sec)

The mean gravity during Skylab 3 was approximately z.10™ 8g (gE = 980 cm/
secZE)S. Thus during vertical pr0cessing,faJEarth =2:107 and RaJSkylab =
4.107, The critical Rayleigh number, Ra; , depends on the heating direction,
aspect ratio {y), and Prandt]l number (Pr). For the M556 experiment, Pr = 1.2
and y = L/D = 11, Thus RgL = 2-106 for heating from below (Ref. 2) and con-
vection is probable only in ground processing, RgL = oo for heating from above
which means that convection is theoretically always absent. In reality, however,
finite lateral temperature gradients exist (side heating or cooling); and RE for
side heating is zero (some flow always exists), In side heating, however, the
heat and mass transport may not be increased until a second critical Rayleigh

c .
number, Raw, is reached,

For side heating (horizontal processing) the Rayleigh number is defined
as.

3
Ra, =8 (THot - TCold) D /TMean va

and the critical Rayleigh number for convective heat and mass transport is de-
fined as (Ref, 3).

c 4

Ra =592 YY¥Y-1=2-10
W

6

For ground processing, Raw = 1.6 . 107; while for Skylab, Raw = 3-2° 102.
Thus convection is not expected to influence heat and mass transport on Skylab
if gravity is oriented perpendicular to the direction of the temperature gradient,

but it will influence horizontal ground processing significantly,
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o InSb Experiment
The Prandtl number and aspect ratios for the configuration of Fig, 2 are:

Pr
v

0.01
4.00

n

Thus the critical numbers are RS, = 2 x 10° (Ref. 2) and RE, =4 x 10% (Ret. 3).

Utilizing a Skylab mean gravity level of 2, '.0'4 gg the Rayleigh numbers are:

Ground Skxla.b
C
Ra; /Ra; 81 8 x 1073
C
Ra_/Rd 371 4 x 1072

Thus, as for the Ge ]'.4 experiment, convection is likely during heating
from below processing on the ground but not on Skylab; while horizontal pro-
cessing will yield convective influences during ground processing, but on
Skylab, little or no convective heat or mass transport will exist (although finite

motion will arise).

o Computer Model Analysis

The preceding dimensional analysis suggests that appreciable convection
is not predicted to exist during Skylab processing from buoyancy forces, To
precisely determine the magnitude of convection and flow patterns, the Lockheed
Convection Analysis Computer program is utilized in Section 3 to quantitatively

assess thermogravitational flows,

2.2 THERMOCAPILLARY DIMENSIONAL ANALYSIS

Surface tension gradients may be an important source of convection in
crystal growth whenever a liquid-fluid interface is present (Ref. 4)., Since no
such interfaces exist in the M556 Ge 14 experiment, only the InSb experiments

will be analyzed. Furthermore, solutocapillary convection will be ignored due
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to the lack of data on concentration dependency of surface tension and on con-

centration gradients expected at the free interface,

As with thermogravitational convection, thermocapillary flow will be
lamina: with small surface tension driving forces, oscillatory at moderate
driving forces and turbulent at large driving forces. The ratio of capillary
driving force to resisting viscous force is expressed by the Marangoni
number defined as,

do
Ma. = . 9T AT L
L Pva

for temperature gradients parallel to the liquid-fluid interface and as

do
_ 4T ATW

W Pra '

for temperature gradients perpendicular to the liquid-fluid interface, The
symbol ¢ represents the surface tension and dg/dT = 0.08 dyn/cmoC for InSb
(Ref, 5).

A critical Marangoni number has been established for Maw (Ref, 6), hut

not for MaL. The dominant temperature gradient for the InSb experiments are

parallel to the free surface, thus only values of MaL are shown in Table 1,

Table 1
THERMOCAPILLARY CONVECTION SENSITIVITY
o
Experiment | Liquid %%(—E% ) L{cm) %%— (Egn%:) Ma.,
M560 InSh 15 2 cm -0.08 35600
Mb62 InSh 15 6 cim -0.08 3950
M559 Ge 15 6 cm -0,60 169000
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Even though no firm critical MaL is known, values of MaL > 7 exhibited

oscillatory laminar flow and Ma, > 140 indicated turbulent flow for molten

L
silicon (Ref. 4). It is therefore evident from Table 1 that significant thermo-

capillary flow should occur in the M560, M562 and M559 experiments,

It should be mentioned at this point, however, that little or no data exist
on values of do/dT in the presence of dopants (such as Te in M562 and Ga in
M559) or of oxide films (see Section 4). Neither the Marangoni numbers given
in Table 1 nor the analysis by Chang and Wilcox {Ref. 4) account for these
phenomena. Thick oxide films may completely suppress thermocapillary

convection.

2.3 HEAT AND MASS TRANSFER RATES

Convection affects crystal growth from the melt primarily through its
influence on (Ref. 7): (1) the amount of dopant or impurity delivered to the
vicinity of the solid-liquid interface; i,e,, the rate of mass transfer; and (2)
the temperature ifluctuations caused near the growth interface (heat transfer).
A convenient measure of the convective augmentation to heat transfer is the
Nusselt number, Nu, It represents the ratio of total heat transfer to conduc-

tion heat transfer and is defined as
Nu = hL/k
where h is an overall coefficient of heat transfer, It is related to thermal
driving forces as follows
C2 C

Nu:C1 Ra™ + CSMa

4

where the coefficients Ci are constants,

The constants, Ci‘ sometimes incorporate the effects of geometry via
the aspect ratio, y, and the effects of relative diffusivity via the Prandtl
number, Pr, The Prandtl number is the ratio of momentum diffusivity v to

thermal diffusivity a. For solutal convection, the Schmidt number, Sc, rather

9
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than Pr is important, The Schmidt number is the ratio of momenturmn diffu-

sivity to molecular diffusion (Sc = ¥/D). Values of Pr and Sc are given later
in Table 2,

Transport by convection tends to dominate as Pr or Sc becomes large.
These two parameters are also important when estimating mass transfer rates
from measured heat transfer rates and vice versa (Ref, 8), The degree of con-
vective augmentation to mass transport is reflected by the Sherwood namber,
Sh, which is analogous to Nu. For small flow rates, the Sherwood, Nusselt,

Schmidt, and Prandtl numbers are related as follows

Sh (SC )n (2.1)
Nu \Pr,

where n = 1/2 for laminar flow and n & 1/3 for turbulent flow, The analogy
between heat and mass transfer as embodied by Eq, {2.1), will be utilized in
Section 3, There it will be used to estimate mass transfer rates from com-

puted heat transfer rates,

2.4 CONCLUSIONS

Sensitivity calculations indicate that thermogravitational convection will
be dominant in ground processing but will not be significant during Skylab proc-
essing. Thermocapillary flow should be significant for Slylab in the melt growth
experiments with turbulent convection even possible for experiments M562
(InSb) and M559 (Ge). Also the utility of the heat-mass transfer analogy was

introduced.

10
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Section 3
COMPUTER PROGRAM MODELS

This section describes the convection analysis, performed via com-
puter program models, of the Skylab experiments M556, M560 and M562.
A brief introduction is given to the Lockheed Convection Analysis Program
(LOCAP} which wvas used in the study. A discussion follows which outlines
the rationale and assumptions made in formulating mathematical models of
these experiments. Results of the computer analysis are then presented in
summary tables and in flowfield contour maps. The results consists of
heat transfer parameters, velocity magnitudes, flow directions and strengths
and temperature profiles in the fluid. A summary of the conclusions reached

from the computer analysis itself is given at the end of the section.

3.1 LOCKHEED CONVECTION ANALYSIS PROGRAM (LOCAP)

The quantitative convection analysis of the Skylab experiments was
performed using the LOCAP computer solution to the Navier-Stokes equa-
tions. LOCAP is a general purpose digital computer code for natural con-
vection analysis. Among the capabilities of the program are: (1) rectangular
or cylindrical geormnetries; (2} gases or liquids; (3) transient and steady-
state analysis; (4) confined fluids or free surface flows; (5) time varying
body force; (6) temperature-dependent material properties; (7) heating
from the side or below; (8) combinaticns of heat flux and fixed-temperature
boundary conditions; and (9) two-dimensional or axisymmetric laminar

flow,

A complete formulation of the various models utilized by th= program
is given in Refs. 9 through 12. A typical formulation using a rectangular

geometry is described in Appendix A,

11
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3.2 METHODOLOGY OF COMPUTER MODELS

A mathematical model of a physical system must contain the impor-
tant parameters and constraints of the physical problem and yet be simple
enough to allow solutions to be obtained. The approach taken in this analysis
is to make assumptions which allow the experiments to be modeled using
LOCAP, and yet still retain the governing parameters of the real experi-

mental configuration. These assumptions are outlined below:
e The flow is agssumed to be two-dimensional.

e Containers of rectangular cross section are used. This was
necessary in some cases to avoid three-dimensional situations
which occur in cylindrical geometries.

® Only the liquid phase of the experiment is modeled. Freezing/
melting processes, latent heat effects and moving sodlid boundaries
are not considered.

e Boundaries of two types are considered: (1) rigid, solid wall
boundaries, and {2) free liquid surface boundaries, i.e., liquid-
vapor interface.

e Accelerations (body forces) are in one direction only; either
parallel to or perpendicular to the heating direction. The mean
g-level is taken to be 2.0 x 10~4 8+ ''G-jitter” is also considered.

e Heat is supplied to the fluid through constant temperature
boundary conditions.

e All material properties, except density, are assumed to be
constant. Table 2 gives the values used in the compuisr
models.

Some of the above assumptions may appear to be severe, however, after
careful examination, we found that (1)} this type of model will provide
quantitative information to the experiment Principal Investigator, and

(2) the current state of the art does not permit any solutions at all for

three-dimensional convection with a melting/freezing interface and free

liquid surfaces,

12
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€1

MATERIAL PROPERTIES USED IN COMPUTER MODELS

Table 2

. e Thermal .
Property Therm.al. Dynamic Density Specific Expansion Prandtl S7chm1dt*
Conductivity | Viscosity Heat .. Number Number]
Material cal 3 0., | Coefficient | "0 1 {v/D)
S {poise) {(gm/cm”} (cal/gm®C) (1/°C)
cm=-sec C
Ge I 9.44 - 10°912.30 < 107% |1.456 - 107%| 4.46 - 107%]7.55 - 1074 1.086 1.5
In Sb 8.00 - 1072 [1.20 . 107%| 6.8 6.54 +i0°211.00 -107% 9.8 . 107 4
Ge 4.30 - 1072|750 - 1073 5.6 9.00 +107%|1.00 - 107% [1.57 - 10~ 10
-3 -3 -4
Water 1.50 - 10~ |6.82 - 10 0.992 0.998 3.60 - 10 4,52 1000
{for com-
parison)
38°C

*
Taken from Ref. 4 or estimated using Refs. 13 and 14.

PES96FA Y1 DU HH-DOSN'I
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The configuration and governing parameters for the Ge 14 model were
shown in Fig, 1. The Gely gas is contained by rigid walls with rectangular
cross section 15cm x 1.4 cm. Figure 2 displays the corresponding con-
figuration for the InSb experiment model. The rectangular container is
6.0 cm x 1.4 ¢cm and the liquid In Sb may be totally confined or have one or
two free surfaces at the upper and lower long walls, The matrix of cases
run on the computer for each of these two experiments is given in the next
subsection in which the results of the models is discussed. The final
case considered uses the Fig, 2 geometry with germanium replacing the
In Sb as the liquid melt.

3.3 Gel, MODEL RESULTS

Table 3 summarizes the results of the GeI4 computer models. Three
aspect ratios were considered as shown with Case G3 being the configuration
which most closely models the M556 experiment. Case Gl was processed
to: (1) checkout the program for Gely gas; (2) provide a comparison of
aspect ratio effects; and (3) provide a starting solution for the larger
aspect ratio cases. Case G2 was run for similar reasons. As Table 3
shows, the influence of buoyancy driven convection on this experiment is

small.

The largest velocity calculated is 0.0025 cm/sec vhich does not
appreciably affect the heat transfer (Nu=l). Similarly for Sc = 1.5, the
mass transfer for growing the crystal is not appreciably affected by these
small velocities (Sh ® 1), It is interesting to note that Case G3 produces

the smallest flow velocities of any of the three cases studied.

In addition to these "constant g" cases, the influence of time-~varying
accelerations or g-jitter were studied. Models of the g-jitter using sine
wave, cosine wave, and '"'sawtooth' profiles with a range of amplitudes and
periods were tested. Amplitudes of even 10-3g at periods of 0.1 sec to
10 sec showed no appreciable change from the comparable constant-g case.
We conclude that most of the realistic jitter that could have been present on
Skylab would not have a detectable influence on the M556 experiment.

14
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S1

SUMMARY OF Ge

Table 3

1, CALCULATIONS

4 4
{g =210 gE)
Grashoff
Number Aspect Configuration Maximum
Cl\?ose Based on Ratio, and Velocity Nul\sfzelt Shl\ergwood
' Vertical H/L Orientation (cm/sec) * :
Dimension
{e
Gl | 1.1x10% 1.0 .~ |- 0.072 1.008 1.18
c
*g
T T
5 h o4
G2 2.0x 10 10.71 —_ 0.014 1.004 1.17
T g T
h bE T
A L. >
G3 1.6 x 10 0.093 0.0025 1.000 1.16

$£996%d Y.L DTUH-DSN'T
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Details of the flow pattcrns and temperature distributions for each of
these cases are shown in Figs. 3, 4 and 5. The velocity vector plots are
shown in the x-y plane with the arrow indicating direction of the flow and
the length of the line denoting relative magnitude. The isotherm maps are
lines of constant temperature plotted in the x-y plane. The isotherms which

are not straight indicate some influence of the flow on the heat transfer.

Figure 3 is for Case Gl in which the flow is seen to be a single cell
somewhat near the bottom of the container. The boundary layer at the left
and right walls appear to be well resolved in this solution. The isotherm
maps are not perfectly straight indicating some (small) influence of the

flow on the heat transfer.

Figure 4 is for Case G2 where the flow is seen to consist of one long
cell going up the hot wall, down the cooler wall and nearly centered in the
container. The isotherm maps are straight except near the extreme ends

where the heat transfer is affected the greatest,

Case G3 is shown in Fig. 5, Note that the isotherms are almost per-
fectly straight indicating a conduction-dominated situation. The streamline
maps are shown here in addition to the velocity vector maps to better identify
the flow pattern, These plots were generated at 800 sec after heating began.
The streamiines show that a two-cell unsteady pattern still exists with a one-~
cell pattern around them. This is apparently a remnant of the unsteady part
of the calculation and the flow should develop into a single long cell at
steady state. The solution was stopped after 800 sec due to long computer

run times. The results were then extrapolated to quasi-steady state.

The results of the Ge Iy computer models have shown that flow can be

4

induced at g=2x10" " but is relatively weak. The heat transfer is affected

very little by this flow, as is mass transfer.

16
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34 InSb MODEL RESULTS

Table 4 summarizes the results of the calculations for the InSb cases,
Case Il consists of a confined region of InSb (no free surfaces) so that only
buoyancy-driven convection is‘possible. Cases I2, I3, I4 consist of both
buoyancy effects and surface tension driven from on the ""top" surface only,

Cases I5 through I8 are for g=0 with free surfaces along both long walls,

A range of values of the surface tension gradient with temperature was
used due to uncertainty in the data for this parameter. The free surface
boundary condition is derived by equating the ghear stress to the surface
tension gradient., This provides an expression for the velocity gradient at

the surface in terms of the Prandtl number and Marangoni number,

Table 4 shows a range of Marangoni numbers from 11.7 to 11,700. The
highest value corresponds to 80/8T = ~0.07 dyne/cm=-°C which is the upper
limit of the data found in the literature {Ref.5). The table shows that
bucyancy convection produces velocities ~0,011 cm/sec and no detectable
influence of the heat transfer (Nu = 1.000). However, the frce surface
effects appear to be quite drastic. Case I4 corresponds to an order of
magnitude less surface tension gradient than the literature data indicates,
yet a maximum flow velocity of ~0.871 cm/sec is calculated with ~18%
increase in heat transfer. The mass transfer induced by this relatively
large velocity will be even more severe. In fact, utilization of Eq. (1)

indicates Sh >> 1, which should appreciably affect dopant distribution.

Case I8 probably cortesponds more closely to the true experiment
conditions; two free surfaces with Ma = 11,700. The fiow velocity calculated
is ~2,41 cm/sec with a ~67% increase in heat transfer. This case and its
implications and comparison to the actual experimen: resulis are given in

Section 4.
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Table 4

SUMMARY OF InSb CALCULATIONS

Gravity Number Marangoni Nusselt Maximum Sherwood

Case 1, 1 of .
No. eve Free No. No. Velocity No.
(g) Surfaces (Ma) (Nu) {cm/sec) (Sh)

1 2x10° 0 -- 1.000 0.011
2 2x10°¢ 1 11.7 1.003 0.071 20.1
I3 2x 10t 1 117. 1.026 0.258 20.5
14 2x10 % 1 1170. 1.185 0.871 23.7
15 0.0 2 11.7 1.002 0.065 20.0
16 0.0 2 117. 1.017 0.237 20.3
17 | 0.0 2 1170. 1.167 0.346 23.3
18 0.0 2 11,700. 1.673 2.41 39.0
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Figurcs 6 through 13 show the details of the calculations for each of
the cight casces, respectively. The figures {a) show the velocity vector maps
in the x-y plane. The arrow indicates the direction of the flow and the
length of the line gives the relative magnitude. The length of the longest

line shown corresponds to the maxirnum velocities of Table 4,

Figure 6 shows that one long cell is induced in the container for the
buoyancy driven case. The isotherms are very straight indicating that
conduction is the dominant heat transfer mechanism, Comparison of Figs.
6a and 7a shows the influence of a free surface. The flow pattern in Fig. 7a
shows that the cell is nearer to the top of the region than the buoyant cell in
Fig. 6a.

Figures 8 and Y show the efiects of increasing Marangoni number on
the flow profile. A comparison of Figs. Th, 8b and 9b for the streamlines
indicates that the cell center moves closer to the "cool" wall as the Maran-
goni number is increased. The strength of the flow also increases as shown
by the streamline magnitude at the center of the cells, The isotherm maps
in Figs. 7c, 8c and 9c give a picture of the influence of the convection on the
heat transfer. The isotherms are no longer straight for the larger Maran-

goni number cases.

Figures 10 through 13 are similar flow maps for the cases having two
free surfaces, The velocity vector and streamline .aaps show the two cell
patterns which result from surface tension driven flow on both the long walls.
No buoyancy effects are included since Case Il showed that thermogravitational
convection is negligible, The isotherm maps progress from almost straight
lines for Ma = 11.7 to very curved patterns for the Ma = 11,700 case. The
Case I8 is particularly significant since this corresponds more closely to
the actual experiment conditions, The calculations give a relatively large
velocity, ~2.4 cm/sec, induce ~67% increase in the heat transfer, could
drastically affect mass transfer and from the shape of the isotherms could
produce a non-flat crystal growth interface. Further discussion of this
case in conjunction with the actual M560 and M562 experiment findings is

given in the next section,
24
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Fig.12b - Streamline Map for InSb Case 17 (Two Free Surfaces, Ma = 1170)
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Fig. 13b - Streamline Maps for InSb Case I8 (Twc Free Surfaces, Ma = 11,700)
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Figure 14 is a plot of the calculated mean Nusselt number for the
InSb Case I1 (no free surface) versus gravity level. This case was run to
determine the g-level at which buoyancy driven convection would influence the

M560 ecxperiment. The figure shows that g = 1071

8, 18 required to increase
the heat transfer by 2% and at 1 g the Nusselt number is only 1.06. This is,
of course, due to the large conduction properties of the metal, The curve for
g=1 was obtained by extrapolation since the computer runs for this case
indicated turbulent flow. We conclude that the acceleration levels aboard

Skylab probably did not induce significant buoyant flow.

The data for Nusselt number versus Marangoni numbers given in
Table 4 is plotted in Fig. 15 for quick reference and possible extrapolation,
It shows that the heat transfer enhancement goes up sharply above Maran-
goni number of ~200. This curve is valid for low Prandtl number fluids
only, since the shear stress boundary condition is a function of Ma/Pr.
Higher Prandtl number fluids should produce less heat transfer enhancement

for the same value of Marangoni number.

3.5 GERMANIUM CASES

The final computer model case studied consists of the M559 experi-
ment; a container 6.0 cm x 1.4 cm of rectangular cross section which con-
tains liquid germanium, Free surfaces were assumed on the 'top'" and
"bottom'' of the fluid along the long dimensions of the container. The
boundary conditions were adjusted to produce the largest Marangoni number
which would yield laminar flow. This value is Ma = 19,500, The results of
this case are shown in Fig, 16. The isotherm maps are seen to bernd quite
drastically due to the 2.61 cm/sec (maximum velocity) flow. The stream-
line maps show the usual two-cell pattern at the upper and lower walls, but
in addition, two "secondary' cells appear to be forming near the left and
right walls. This may be realistic or it may indicate that the flow is nearing

a turbulent nature. In the latter case, the computer model is not valid.
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The temperature gradient which produces Ma = 19,500 is only 2.5 °c/cm.
This case conclusively indicates that if a free germanium surface is present,
with even a small temperature gradient along it, then the Marangoni convection
could easily approach the turbulent regime. The calculated Nusselt number
for this case is Nu = 2,15 indicating a twofold increase in heat transfer.

With 5. = 10 for germanium, the mass transfer will be even more significantly
augmented. Utilizing Eq, (2.1}, Sh &30.

3.6 SUMMARY OF CONCLUSIONS

The solutions from the computer program models of convection in the
Skylab M556, M559, M560 and M562 experiments have resulted in several
conclusions. These are primarily concerned with the conditions which could
cause convective flow, the probable inagnitudes of the flow and the potential
effects on heat and mass transfer processes in the experiments. The con-
clusions listed below are based on the results of the computer models and
are valid within the assumptions made in formulating the models.

e. Buoyancy driven convection in the Gel; vapor growth experi-

ment is relatively weak in strength; i.e., ~0.014 cm/sec maxi-
mum and more probanty ~0.002 em/sec. This magnitude
depends on the orientation of the heating direction with respect

to the primary acceleration direction. The exact orientation is
apparently unknown.

# The heat transfer rates in the Ge I, experiment are affected
very little by the convective flow; %ess than 1%.

® The mass transfer in the actual crystal growth should be
increased by no more than 20%.

® Buoyancy driven convection in the InSb experiment is also
relatively weak; ~0.01 cm/sec maximum. Because of the high
conductivity of the metals, this magnitude of flow causes no
appreciable change in the heat transfer.

e A gravity level of ~10"1 g would be required to enduce
appreciable convective heat transfer in the InSb experiment.
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o The possible presence of free liquid surfaces in the InSb experi-
ment is extremely important, The computer model calculations,
which are liinited to the laminar flow regime, show that velocities
of ~2.4 cm/sec may result from surface tension driven convec-
tion for even moderate Marangoni numbers. This can cause
~67% increase in the steady state rate of heat transfer at the
confined walls of the fluid.

¢ Extrapolations of the laminar moedels to the full range of sur~
face tension gradients which could exist in the in Sb experi-
ment have shown that turbulent flow could easily be generated.

® The effect of having a free surface on both sides of the melt is
to reduce the velocity magnitude about 3% for the largest
Marangoni number tested.

¢ The physical properties of germanium produce an even larger
potential for Marangoni convection,

e The computer models indicate the temperature oscillations may
be setup in the metals experiments if the heating direction is
parallel to the primary acceleration direction. No quantitative
results were obtained for this orientation.

e The relatively large velocities induced at the free surface can
potentially aifect mass transfer processes drastically in the
metals experiments,

The conclusions reached from this computer model study can be further
quantified by refinement of the models themselves. This would require:
(1) o better definition of the orientation of the acceteration vector with
respect to *he container; {2) inclusion of the melting/freezing latent heat
effects and the moving solid interface; and (3) in some cases a three-
dimensional convection model. The results obtained here are inteﬁded to
aid the experiment Principal Investigator in analyzing the results of

specific Skylab experiments.
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Section 4
COMPARISON OFF EXPERIMENTAL AND THEORETICAL RESULTS

Experimental data from ground and Skylab processing were limited
primarily to crystalographic analyses. The available results are summarized
in Refs. 15, 16 and 17 and by recent conversations with the Principal Investi-
gators. Neither thermocouple probes into, nor visual observations of, the
melt or gas could be utilized during actual processing. Thus it is very diffi-
cult to make direct comparisons between the theoretical results of Section 3
and the available experimental data. Therefore, the following comparisons

will be qualitative in nature,

4.1 Gely, EXPERIMENT

Experimental results of Skylab M566 experiment, Case 3A {Ref. 15,
p. 241), indicated that an order-of-magnitude increase over expected mass
transfer rates was observed. The analysis conducted in Section 3 was per-
formed to investigate if thermogravitational convection could have accounted
for this increase. It was shown, as a result of the computer model analysis,
that no more than a 20% increase in mass transfer over pure diffusion could
be expected by accounting for steady 10‘-3 gF convection, worst-case

g-jitter (vibration) convection, and thermoacoustic convection,

The authors thereby conclude that either the measured Skylab mass
transfer rates were in error or that the extrapolation of ground based data
presented in Ref. 16 were faulty. This could be due to: (1) errors in
physical property values for the rather complex systemn under investigation,
and/or {2) to an oversimplified base model for extrapolation {Ref. 16, p. 395).
Further ground based testing could provide a proven, correct basis for

extrapolating ground tests.
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4,2 M560 InSbh EXPERIMENT

Experimental results of Skylab M560 indicate that (Ref. 15}

A. The growth interface maintained a very uniform and slightly
convex (to the melt) shape for the majority of its regrowth
period.

B. Regularly occurring transients appeared in the growth rate
with a period of ~5 minutes which resulted in impurity
banding in the crystal.

C. An axial impurity concentration profile existed in between

those typical of classical steady state diffusion controlled

and perfect mixing (Ref. 18, p. 332), but more closely re-

sembling diffusion rather than mixing.
Result {A) certainly rules out oscillatory or turbulent convection because
these transient modes of convection would induce nonuniformities in the
growth interface. In addition, no oscillatory convection modes known exhibit
periods of five minutes as in result (B) (see Ref. 19 for thermogravitational
and Section 3.4 for thermocapillary). Regarding Result (C), the transient
nature of growth under diffusion contrel or very small convective flows

could account for the observed axial impurity profiles.

Thus, 1t is obvious that the theoretical results of Section 3.4 do not
agrec with the preceding observed Skylab data. Only the convective results
exhibited by Ma < 12, as exhibited in Fig. 10, could be reconciled with
these data. Marangoni numbers this small, however, are two orders of
magnitude below those expected. It is not likely that incorporating such
effects as actual geometry, impurities or the moving solid/liquid interface

would produce such a reduction in convection.

The only plausible explanations are listed below. None of these
thecories can be proven, however, without further experimental tests,
The following reasons for expecting the thermocapillary Marangoni effect
to be lowered by orders of magnitude were selected after consultation with

recognized experts in surface science and convection (Refs. 20, 21 and 22):
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e Oxide Film: Molten InSb, even in the environment of the
M560 experiment, is very susceptible to the formation of
oxide films. {See Appendix B for details,) Thermodynamics
indicate that once such a layer is formed, even if it is only a
few angstrons thick, it is virtually impossible to remove (Ref. 21).
Thus, the spasmodic breakdown of such a film with a period
of five minutes could expalin the suppresion of Marangoni flow,
except for a brief period when the film broke down. The regu-
larity of the film breakup could be due to equipment-induced
vibration. Germanium {(Experiment M559), on the other hand,
is not as susceptible to oxide films in reducing atmospheres
such as those on Skylab. Thus turbulent thermocapitlary con-
vection could have produced the turbulence seen in M559.

e Counter Concentration Gradients: Concentration gradients may
have arisen which would have opposed thermal gradients (e.g.,
thermocapillary opposed by solutocapillary convection). Con-
centration gradients should occur due to: (1) Gibbs adsorption
of impurities at the vapor/liquid interface is temperature depen-
dent, and (2) segregation of impurities at the growth interface,
The lack of physical property data relating to these two phe-
nomena make it impossible to assess their role any further,

Of the two preceding reasons for reduction of capillary convection, it
is felt that oxide films are more likely to be the cause. More detailed infor-
mation concerning the effects of dopants and impurities on liguid metal

surface tensions can be found in Appendix C.

4.3 M562 InSb EXPERIMENT

The observed experimental data, the subsequent conflicting theoretical
results (Section 3.4), and the rationale for reconciling theory and experiment
ar. practically identical to that presented in Section 4.2, The one significant
difference is that the melt was not completely free of the container as in
Experiment M560. Thus, one can expect that the many "surface ridges' (Ref.
15) which contacted the container would have lessened the thermocapillary

driving forces, but not by several orders of magnitude.
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4.4 M559 GERMANIUM EXPERIMENT

Experimental results for the Skylab samples indicated vigorous,
turbulent convection (Refs, 15, 21 and 22). This agrees exactly with the
predicted theoretical analyses of Section 3.5 and the sensitivity calculations
expressed in Table 1. Suppresion of convection for germanium can only be

obtained in space if free surfaces are eliminated,
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Section 5
CONCLUSIONS AND RECOMMENDATIONS

The results presented in Sections 2 through 4 have led to the foilowing

conclusions:

e It has been shown that judicious use of both dimmensional analy-
sis and an existing computer model ({LLOCAP) can contribute
significantly to post-flight data analysis of the Skylab M518
Multipurpose Furnace crystal growth experiments,

o Neither thermogravitational, g-jitter nor thermoacoustic con-
vection can account for the unexpected, order of magnitude
increase in mass transport rate observed in Ge I, experiment
M556, Skylab Case 3A,

¢ Turbulent convection existing during Skylab experiment M559,
"Microsegregation in Germanium,' was definitely caused by
thermocapillary forces as predicted from theory both by dimen-
sional analysis and by a convection model.

# From theoretical considerations, both indium-antimonide
experiments M560 and M562 should have exhibited substan-
tial thermocapillary convection, but did not due to probable
oxide film interference (or opposing solutal effects).

Based on these conclusions and the detailed analyses and information
contained in Appendixes B and C, five specific recommendations can be pre-

sented:

1. Further ground tests are needed on the Gely, M556 experiment to enable
accurate extrapolation of mass transfer rates to microgravity conditions,
In addition to better physical property and rate measurements, a more
rigorous mass transport model upon which to extrapolate from is needed.

2. The effect of temperature, oxide films, dopants and impurities on surface
tension of indium-antimonide, and other melts needs to be accurately
measured in ground tests.
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3. The Lockheed convection computer model should be applied to Skylab
experiments;

e M558 "Radioactive Tracer Diifusion" {Dr, A. Q. Ukanwa,
Howard University) to determine if the observed radial con-
centration profiles were caused by Marangoni convection,

e M563 "Mixed lII-IV Crystals™ (Dr. W.R. Wilcox, Clarkson
Institute of Technology) to determine if the observed sharp
radial concentration gradients were caused by Marangoni
convection (see Ref. C-3).

e M566 "Copper Aluminum Eutectic" (E.A. Hasemeyer, MSFC)
to decide if lamellae imperfections were caused by Marangoni
convection and/or transient growth rates.

4, The Lockheed convection computer model, with the terms accounting for
mass transfer, should be applied to Skylab experiments M556, M560 and
M562 in order to: {(a) more accurately predict mass transfer rates (Eq.
{2.1) is just a rough approximation! and (b) provide the radial concentra-
tion profiles which result from small Marangoni number (Ma< 12} flow,

5. Rigorous convection sensitivity and/or convection modeling analyses, in
conjunction with measurement or prediction of capillary effects, need to

be applied to all space processing flight experiments before final designs
are chosen if convection suppression is desired.
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NOMENCLATURE
Symbol Definition
Cp heat capacity of liquids, cal/g
D diameter of confainer, cm
g dimensionless gravity level (gravity/earth gravity)
8 earth gravity, 980 cm/secz
Gr Grashof number
therrnal conductivity of liquid, cal/cm-sec -°c
L length or height of container, cm
Nu Nusselt number, total heat transfer/conduction
P pressure
Pr Prandtl number, p Cp/k
r radial coordinate of container, cm
R radius of container, cm
Ra Rayleigh number, pZCpB gATL3/pk
T temperature, °c
u radial or lateral component of velocity in the fluid, ecm/sec
\ axial or vertical component of velocity in the fluid, cm/sec
W width of container, cm
X,¥ Cartesian coordinates, cm
z axial coordinate of container, cm
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Greek Definition
a thermal diffusivity, cmz/sec
B coefficient of thermal expansion, l/OC
v aspect ratio of container (height-to-diameter)
1) viscosity, g/cm sec
n aspect ratio of container (width-to-heigth)
p density, g/cm3
v kinematic viscosity, cmz/sec
b stream function, cmz/sec
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Appendixz A

DESCRIPTION OF LOCKHEED CONVECTION
ANALYSIS PROGRAM
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Appendix A

LOCKHEED CONVECTION ANALYSIS PROGRAM — LOCAP

The study of convection in the Skylab experiments was performed by
utilizing the Lockheed Convection Analysis computer program (LOCAP),
LOCAP is a general purpose digital computer code for natural convection
analysis. Among the capabilities of the program are: (1)} rectangular or
cylindrical geometries; (2) gases or liquids; (3) transient and steady state
analysis; (4) confined fluids and free surface flows; (5) time-varying body
force; (b) temperature-dependent material properties; (7) heating from the
side or from below; (8) combinations of heat flux and temperature boundary
conditions; and (9) two-dimensional or axisymmetric laminar flow. A com-
nlete formulation of the various models utilized by the program is given in
Refs, 9 through 12.

A typical formulation is now given for a problem using a rectangular
geometry and Cartesian coordinates. This is presented for the reader
interested in how the math model is constructed. The sketch below shows

the geometry, coordinate system and configuration of the model, A rectangular

1;:1!1

SRR

L TL=*l Fluid

l L.
____ml_.

Coordinate System and Boundary Conditions (Typical Configuration)

A-1



LMSC-HREC TR D496534

box of width, W, and length, 1., confines a fluid between rigid boundaries.

The fluid can be initially at rest and isothermal. The gravitational accelea-
tion is time-dependent and in the direction of the -y axis, As the left wall

is heated, flow is initiated by buoyancy due to density gradients. The prob-
lem now consists of determining the flow characteristics and heat transfer

¢s a function of time or until a steady state is reached.

The mathematical formulation of the problem is in terms of the Navier-
Stokes equations in primitive variable form. Assumptions made in this illus-
trative case are: (1) material properties except density are :.onstant; (2) laminar
flow of a Newtonian fluid; (3) viscous effects in the momentum equation are for
incompressible flow; (4) viscous dissipation, radiation and compressibility are
neglected in the energy equation. The governing equations are given below in

terms of dimensionless variables and in conservation law form.

X -Momentum

2 2
a ) 2 ) P a 29
2 (Pw + 5 Pu) + 5l = - o+ ==t 3
ox 3
Y -Momentum
D 9 5 2 = ap . [9%v . 2 8%
B OV Hgr ey ko ov) = G-l g - mgot |zt T
ox oy
Continuity
9 ) )
'5t£+'3;(9u) *ngy V) =0
Energy

2 2
5 5 3 1 [oPr, 2 9T
3t PT) t5 PuT) + n 5o (vT) = 5o (axz tn ayz)
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State Relation

ﬁAT-I-%QvKAP =0

Where the dimensionless groups are:

n = W/L  Aspect ratio

G = - Ex WS/VZ Buoyancy parameter (similar
to Grashof number)

Pr = pCp/k Prandtl number
B = - l/po (ap/aT)P Coefficient of thermal expansion

K = 1/p0 (ag/aP)T Coefficient of isothermal
compressibility

Boundary conditions for the equations can be various combinations of
wall heat fluxes, temperatures, no slip, free slip and {ree surface conditions.

A simplified set are the following:

Typical Initial Conditions

u =v =0
T =1
p =1
T =1
Typical Boundary Conditions
uau=vz=0 at solid walls
Tx=0,yy = T

L
T(x=1,y) = Tp

dT/dy = 0 at y = 0
T/ 3y 0 at y =1

A-3
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A finite difference method is used for obtaining numerical solutions to
the equations. The basic method is that of Spradley and Churchill (Ref. 9).
It utilizes an explicit finite difference, forward-marching method. Centered
differences are used for all terms except the convection terms where a con-
servative donor method is applied. The grid consists of a sequence of cell-
centered points with the spacings Ax, Ay constant but not necessarily equal,
The utility of the method is that it yields both transient and steady state solu-

tions, is conditionally stable and numerically conservative.

The solution process begins at some time where a flow field is known,
This can be t = 0 with the fluid isothermal and at rest or at t = t where the
flow field is supplied from the solutions for 2 previous case. The flow for
"heating -from-below' cases is initiated by either a temperature perturbation
from the conductive state or by using the flow from a previous case. From
the initial data the egquations are solved to march the solution forward in time
to yield the velocity components, density and temperature profiles at all grid
points in the container. The solutions are mapped as isotherm contours,
streamlines and/or velocity vector fields. The LOCAP code, the numerical
technique and solution algorithms have been verified for many sample prob-
lems by comparing them with previous theory and experimental data (Refs.
9 thiough 12). The program is in production status for use on a Univac 1108

multiprocessor computer syster,

A-4

I ACKIIICEN LHIAMTOWIT B C DECCADC/L @ CcafnIRMCCHiA® CCATED



PR T et s d e e e e | . v | R

LMSC-HREC TR D496534

4
Appendix B
InSb OXIDE FILMS

#*
Contributed by J. P, Doty.
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Appendix B

Indium antimonide which is exposed to air at room temperature will very

*

readily form an oxide coating on its surface. Measurements by A, J, Rosenberg
have been made on the oxidation rate of InSb at 400 microns of oxygen pressure

at a temperature of 26.2°C.

These measurements along with oxidation rates of other III-V compounds

are shown in the following figure.
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Oxidation of III-V compounds at 26.2°C. P,_ =400 microns
{After Rosenberg) 2

L
Rosenberg, Arthur J,, "The Reactions of III-V Intermetallic Compounds with

Gaseous Oxygen," Vol. 1, Chapter 49 of Compound Semiconductors, Edited by
R.K. Willardson and H. L. Goering.
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This figure shows a quantity of oxidation of 6% that of the quantity at 367°C.
This can be seen by comparing the figure on page B-1 with the figure im-

mediately below,
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hoc) 507 1 eaw® 1374100 5.5k 0%
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zw’ - i
® |
i
1
w* f ; !
| 10 100
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Comparison of oxidation rutes of
indivm. autitony, and In8h ot 367°C {uiter No-
senberg nna Lovine  LThe dati are normalized to
unit surface are using s roughness factor of 1.3
for Insh, atul the cross-seetional aren of the
Awnpde wube for indinm, Unit roughness factor is
assuied for antimony which wus obiaincd by
elenvage.

These reactions are irreversible and once a sample of InSb is exposed to air
an oxide coating will be present.

In the M560 experiment, the sample was prepared and was probably
exposed to air prior to placing in the guartz tube to be evacuated and sealed
off. During this time an oxide coating would have built up on the exposed

surface. Thus, it is almost a certainty that the sample had an oxide film on
its surface after being sealed into the ampoule,

The ampoule was fitted to 350 torr with ultrahigh purity hydrogen prior
to sealing which would stop any further oxidation of the surface. Upon heating

the ampoule to melt temperature, much of the oxide film would react with the

hydrogen. The amount of oxide film remaining would be directly proportional

B.-2
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to the quantity of hydrogen and to the quantity of oxygen on the sample surface
when scaled in the ampoule, This quantity of oxide film is a direct function of

the time the sample was exposed to air prior to being sealed in the ampoule.

Thus, unless the sample was exposed to air only a few seconds or less,
an oxide film could exist on the sample after melting and crystal growth. This
oxide film may only be one or a few atomic layers thick, but it is very prob-
ably present on the grown crystal.

B-3
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Appendix C
DOPANT EFFECTS ON MELT-VAPOR SURFACE TENSION
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Appendix C

Liquid metals possess unusual and/or ill-defined interfacial phenomena
because {Ref.C-1):

e Liquid metals are notable for their high surface tensions; typical
values in the presence of inactive gases are listed in Table C-1,
These may be compared with 72 dyne em-! for water at 20°C and
values ranging from 17 to 45 dyne cm™* for most organic liquids,

e Many solutes in liquid metals are surface active, especially oxygen,
sulphur, selenium and tellurium. The effects of these on the surface
tension of copper are shown in Fig,C-1. Because many non-metals
are highly surface active, reported values of surface tension are
open to doubt, unless special precautions have been taken to eliminate
impurities. Solute metals are generally less surface active than non-
metals. In the case of iron those listed in Table C-2 have substantial
effects but they are much less active than O, S, Se and Te.

e The effect of temperature is to lower the surface tensions of pure
metals but to raise the surface tensions of solutions in which the
surface tension is markedly lowered by a surface-active substance,.
Thus the curves of surface tension versus composition typically
change with temperature as shown in Fig.C-2 for solutions of Te
in Sn.

From Fig,C-2, it is obvious that do/dT = 0 for certain concentrations
of Te. If such a concentration existed for the Te-doped M562 experiment,
thermocapillary convection would have been suppressed., Similar effects by

Se could have occurred in the M560 experiment,

Influence of Two Solutes

In general, the effects of two solutes together cannot be predicted. The
surface tensionsg of steels cannot be calculated from their compositions even
approximately, because the effects of sulphur and oxygen together are not
additive, and their behavior is affected in unpredictable ways by alloying

elements. Also, two non-active solutes when present together may produce

C-1
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Table C«1|
SURFACE TENSIONS OF LIQUID METALS

Graup Metal Temp. ("C)  Surface tension
(dynecm™)
1b Cu 120 1280
b Ag a0 920
ib Au 1070 1127
2b Zn 410 750
L.} cd kEii] 550
2b Hg 20 465
b Ga 10 i
3b In 160 340
3b Te 450 460
L] Si 1420 ~ 125
48 Ti ~ 1670 1510
4b Sn ~ 240 ~ 550
4b Pb 400 445
5b 5b 640 395
5b Bi 400 375
Ga Cr 1540 > 1590
6a w 3380 2310
Ta Mn ~ 1250 = {300
8 Fe 1550 1788
8 Co 1550 1886
8 Ni 1550 1934
8 Pt 1800 1699
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Fig.C-1 - Surface Tengions for Solutions O, S, Se, Te, in
Liquid Copper at 11509C {Ref.C-1)




LMSC-HREC TR D49%6534

Table C-2

dy/d (ATOM % SOLUTE) FOR VARIOUS SOLUTES IN LIQUID
IRON, AND NICKEL (WITH ASTERISK) (REF,C-2)

Groupin 3 4 5 6
Periodic Table
Element B ~ 26 C ~ 3 N 850 O 8,600
Al ~ 38 S5i ~ 6 P 13 s 15,400

In*~ 1800 5n ~ 1600 As~ 200 Sec 54,600
Sn* ~ 1000  Sb ~ 3900  Te>54,600

dg/dT = 0
5650 for Different Te
Uy T .
o ( ( i Concentrations
e | i
& 525?-\%@\4 B
¥ I&E‘-—-_‘_ ' enne
N
~ : toaooeCTy
Sou l \?\\l
\ ‘ i 300°C |
| - L
g 0001 002 003 004
Te (otam %)
{1

Fig.C-2 ~ The Surface Tensions of Solutions of Te in Liquid Sn
at Three Different Temperatures (Ref.C-2)
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a surface-active scluble compound. For example, chromium and carbon are
both inactive in liquid iron, but when present together at concentrations too
low for the formation of free carbides, the surface tension is markedly
lowered. A similar situation arises with iron containing tungsten and carbon
togzther, Surprisingly there are no such effects when vanadium and nitrogen
or chromium and nitrogen are present together, in spite of the tendency for

these metals to form stable nitrides.
Thus, only careful measurements of the melt-vapor systems utilized
in the M518 experiments would enable rigorous diagnostics to be performed

for these experiments regarding capillary effects.

Kinetics of Adserption

From the preceding discussions, it is likely that Te, Se, and other
solutes will preferentially absorb at the melt-vapor interface. It is possible
to apply the Gibbs adsorption equation to solutes in liquid metals in order to
estimate the excess of solute in the surface region over and above the con-

centration in the bulk liguid.

Considering the time required for an adsorbed solute to make its way
by diffusion from static bulk liquid to a fresh surface, one can write (see
Eq.(11.34) Ref.C-1},

1/2
- (..12.) AC,
nt

where AC is the driving force for adsorption in terms of concentration., At
the commencement of adsorption AC is virtually equal to the concentration
in the bulk liquid, but it decreases in a complex manner as adsorption proceeds,

For an order of magnitude calculation, AC can be taken as constant,

n = 20/mY2/2¢ .
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Utilizing D of 5 x 10-5 cm? s-l, typical of oxygen in iron, n equal to the

10 ole em™2 and C equal to 7 x 1073 (oxygen at

surface excess 18 x 10
0.016 wt%), t becomes about 10-5 8, DBecause of the fall in driving force

as adsorption proceeds, the actual time is about some four or five times as
great, Nevertheless the surface concentration is established almost instan-
taneously even when the bulk oxygen concentration is less than one tenth its

saturation concentration.

These calculations indicate that the M518 experiment's surface active

materials such as O, Te, and Se would have saturated the L/V interface in seconds,

Nature of the Surface Layer

It seems almost certain that melt surfaces are packed with n ratively
charged anions and that immediately beneath them lie positively charged
metal atoms. There may thus be an electrical double layer which becomes
less and less ionic as the poiairizability of the solute increases through sulphur

to selenivra and tellurium,

Ground Evidence of Melt Marangoni Stirring

An interesting case of surface flow, arising from surface tension differ-
ences set up in a gas-metal reaction, is illustratzd in Ref.C-1,p.453, A
small jet of oxygen is being directed at the center of the top surface of un-
stirred liquid tin contained in a small crucible at 1100°C, Directly beneath
the jet, tin oxide is produced and this looks bright because of its high emissivity.

Because the oxide wets the metal and has a much lower surface tension than the

unoxidized tin, which is at a distance from the jet, it has a high spreading coef-
ficient. Thus the oxide is drawn out towards the sides of the crucible in streaks,
dissolving rapidly as it moves. In addition the metal near the oxide, which is
high in oxyg en., probably has a much lower surface tension than the metal near
the walls, so that a radial fiow of metal is induced towards the sides of the

crucible from the center. The net result is radial movement of oxide and

C-5
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metal with velocities which range up to 150 cm s-l in a 4.5 diameter crucible.
It has been shown that this movement is not attributable to the momentum of

the gas emerging from the jet.

Conclusions

Little data exist on capillary convection in molten metals or on the
effects of dopants and impurities on interfacial tensions. The data presented
in this appendix however, illustrate that solutal effects (from such highly
surface-active solutes as O, Se, Te) could have accounted for the apparent
suppression of thermocapillary convection in Skylab experiments M560 and
M562, versus the presence of significant capillary-driven convection in
Skylab experiments M559 and M563 (Ref, C-3),
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