10 research outputs found

    On the determination of the interaction time of GeV neutrinos in large argon gas TPCs

    Full text link
    Next-generation megawatt-scale neutrino beams open the way to studying neutrino-nucleus scattering resorting, for the first time, to gaseous targets. This could lead to deeper knowledge of neutrino cross sections in the energy region between hundreds of MeV and a few GeV, of interest for the upcoming generation of long-baseline neutrino oscillation experiments. The challenge is, therefore, to accurately track and (especially) time the particles produced in neutrino interactions in large and seamless volumes down to few-MeV energies. We propose to accomplish this through an optically-read time projection chamber (TPC) filled with high-pressure argon and equipped with both tracking and timing functions. In this work, we present a detailed study of the time-tagging capabilities of such a device, based on end-to-end optical simulations that include the effect of photon propagation, photosensor response, dark-count rate and pulse reconstruction. We show that the neutrino interaction time could be reconstructed from the primary-scintillation signal with a precision in the range 1--2.5~ns (σ\sigma) for point-like deposits with energies down to 5~MeV, and well below 1~ns for minimum-ionizing particle tracks. A discussion on previous limitations towards such a detection technology, and how they can be realistically overcome in the near future thanks to recent developments in the field, is presented (particularly the strong scintillation yields recently reported for Ar/CF4_4 mixtures). The performance presented in our analysis seems to be well within reach of next-generation neutrino-oscillation experiments through the instrumentation of the proposed TPC with conventional reflective materials and a SiPM carpet behind a transparent cathode

    NEXT-CRAB-0: A High Pressure Gaseous Xenon Time Projection Chamber with a Direct VUV Camera Based Readout

    Full text link
    The search for neutrinoless double beta decay (0νββ0\nu\beta\beta) remains one of the most compelling experimental avenues for the discovery in the neutrino sector. Electroluminescent gas-phase time projection chambers are well suited to 0νββ0\nu\beta\beta searches due to their intrinsically precise energy resolution and topological event identification capabilities. Scalability to ton- and multi-ton masses requires readout of large-area electroluminescent regions with fine spatial resolution, low radiogenic backgrounds, and a scalable data acquisition system. This paper presents a detector prototype that records event topology in an electroluminescent xenon gas TPC via VUV image-intensified cameras. This enables an extendable readout of large tracking planes with commercial devices that reside almost entirely outside of the active medium.Following further development in intermediate scale demonstrators, this technique may represent a novel and enlargeable method for topological event imaging in 0νββ0\nu\beta\beta.Comment: 32 Pages, 22 figure

    A Compact Dication Source for Ba2+^{2+} Tagging and Heavy Metal Ion Sensor Development

    Full text link
    We present a tunable metal ion beam that delivers controllable ion currents in the picoamp range for testing of dry-phase ion sensors. Ion beams are formed by sequential atomic evaporation and single or multiple electron impact ionization, followed by acceleration into a sensing region. Controllability of the ionic charge state is achieved through tuning of electrode potentials that influence the retention time in the ionization region. Barium, lead, and cobalt samples have been used to test the system, with ion currents identified and quantified using a quadrupole mass analyzer. Realization of a clean Ba2+\mathrm{Ba^{2+}} ion beam within a bench-top system represents an important technical advance toward the development and characterization of barium tagging systems for neutrinoless double beta decay searches in xenon gas. This system also provides a testbed for investigation of novel ion sensing methodologies for environmental assay applications, with dication beams of Pb2+^{2+} and Cd2+^{2+} also demonstrated for this purpose

    Ba+2 ion trapping using organic submonolayer for ultra-low background neutrinoless double beta detector

    Get PDF
    If neutrinos are their own antiparticles the otherwise-forbidden nuclear reaction known as neutrinoless double beta decay can occur. The very long lifetime expected for these exceptional events makes its detection a daunting task. In order to conduct an almost background-free experiment, the NEXT collaboration is investigating novel synthetic molecular sensors that may capture the Ba dication produced in the decay of certain Xe isotopes in a high-pressure gas experiment. The use of such molecular detectors immobilized on surfaces must be explored in the ultra-dry environment of a xenon gas chamber. Here, using a combination of highly sensitive surface science techniques in ultra-high vacuum, we demonstrate the possibility of employing the so-called Fluorescent Bicolor Indicator as the molecular component of the sensor. We unravel the ion capture process for these molecular indicators immobilized on a surface and explain the origin of the emission fluorescence shift associated to the ion trapping

    Reflectance and fluorescence characteristics of PTFE coated with TPB at visible, UV, and VUV as a function of thickness

    No full text
    Abstract: Polytetrafluoroethylene (PTFE) is an excellent diffuse reflector widely used in light collection systems for particle physics experiments. In noble element systems, it is often coated with tetraphenyl butadiene (TPB) to allow detection of vacuum ultraviolet scintillation light. In this work this dependence is investigated for PTFE coated with TPB in air for light of wavelengths of 200 nm, 260 nm, and 450 nm. The results show that TPB-coated PTFE has a reflectance of approximately 92% for thicknesses ranging from 5 mm to 10 mm at 450 nm, with negligible variation as a function of thickness within this range. A cross-check of these results using an argon chamber supports the conclusion that the change in thickness from 5 mm to 10 mm does not affect significantly the light response at 128 nm. Our results indicate that pieces of TPB-coated PTFE thinner than the typical 10 mm can be used in particle physics detectors without compromising the light signal

    Demonstration of neutrinoless double beta decay searches in gaseous xenon with NEXT

    No full text
    Abstract The NEXT experiment aims at the sensitive search of the neutrinoless double beta decay in 136Xe, using high-pressure gas electroluminescent time projection chambers. The NEXT-White detector is the first radiopure demonstrator of this technology, operated in the Laboratorio Subterráneo de Canfranc. Achieving an energy resolution of 1% FWHM at 2.6 MeV and further background rejection by means of the topology of the reconstructed tracks, NEXT-White has been exploited beyond its original goals in order to perform a neu- trinoless double beta decay search. The analysis considers the combination of 271.6 days of 136Xe-enriched data and 208.9 days of 136Xe-depleted data. A detailed background modeling and measurement has been developed, ensuring the time stability of the radiogenic and cosmogenic contributions across both data samples. Limits to the neutrinoless mode are obtained in two alternative analyses: a background-model-dependent approach and a novel direct background-subtraction technique, offering results with small dependence on the background model assumptions. With a fiducial mass of only 3.50 ± 0.01 kg of 136Xe-enriched xenon, 90% C.L. lower limits to the neutrinoless double beta decay are found in the T 1 / 2 0 ν T1/20ν {T}_{1/2}^{0\nu } > 5.5 × 1023 − 1.3 × 1024 yr range, depending on the method. The presented techniques stand as a proof-of-concept for the searches to be implemented with larger NEXT detectors

    Demonstration of neutrinoless double beta decay searches in gaseous xenon with NEXT

    Full text link
    The NEXT experiment aims at the sensitive search of the neutrinoless double beta decay in 136^{136}Xe, using high-pressure gas electroluminescent time projection chambers. The NEXT-White detector is the first radiopure demonstrator of this technology, operated in the Laboratorio Subterr\'aneo de Canfranc. Achieving an energy resolution of 1% FWHM at 2.6 MeV and further background rejection by means of the topology of the reconstructed tracks, NEXT-White has been exploited beyond its original goals in order to perform a neutrinoless double beta decay search. The analysis considers the combination of 271.6 days of 136^{136}Xe-enriched data and 208.9 days of 136^{136}Xe-depleted data. A detailed background modeling and measurement has been developed, ensuring the time stability of the radiogenic and cosmogenic contributions across both data samples. Limits to the neutrinoless mode are obtained in two alternative analyses: a background-model-dependent approach and a novel direct background-subtraction technique, offering results with small dependence on the background model assumptions. With a fiducial mass of only 3.50±\pm0.01 kg of 136^{136}Xe-enriched xenon, 90% C.L. lower limits to the neutrinoless double beta decay are found in the T1/20ν>5.5×10231.3×1024_{1/2}^{0\nu}>5.5\times10^{23}-1.3\times10^{24} yr range, depending on the method. The presented techniques stand as a proof-of-concept for the searches to be implemented with larger NEXT detectors

    Measurement of the 136{}^{136}Xe two-neutrino double beta decay half-life via direct background subtraction in NEXT

    Get PDF
    We report a measurement of the half-life of the 136{}^{136}Xe two-neutrino double beta decay performed with a novel direct background subtraction technique. The analysis relies on the data collected with the NEXT-White detector operated with 136{}^{136}Xe-enriched and 136{}^{136}Xe-depleted xenon, as well as on the topology of double-electron tracks. With a fiducial mass of only 3.5 kg of Xe, a half-life of 2.340.46+0.80(stat)0.17+0.30(sys)×1021 yr2.34^{+0.80}_{-0.46}\textrm{(stat)}^{+0.30}_{-0.17}\textrm{(sys)}\times10^{21}~\textrm{yr} is derived from the background-subtracted energy spectrum. The presented technique demonstrates the feasibility of unique background-model-independent neutrinoless double beta decay searches.Comment: 9 pages, 7 figures, and 1 appendi
    corecore